Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN C: INGENIERÍAS

Vol. 14 Núm. 2 (2022)

Predicción de la quiebra empresarial en el sector agroindustrial de la ciudad de Machala

DOI
https://doi.org/10.18272/aci.v14i2.2695
Enviado
abril 25, 2022
Publicado
2022-12-12

Resumen

En el presente trabajo se propone un modelo de predicción de quiebra empresarial para las organizaciones agroindustriales domiciliadas en la ciudad de Machala, Ecuador. Este modelo se contruyó utilizando los indicadores financieros de 311 empresas listadas en el portal de información de la Superintendencia de Compañías del Ecuador. Como resultado, el modelo de predicción de quiebra, basado en árboles de decisión, tiene una contabilidad/precisión del 78.57 %, la cual es aceptable comparada con la de otros modelos propuestos en la literatura. Finalmente, el modelo se aplicó en el ejercicio fiscal 2018 obteniendo una alerta temprana para 190 empresas de la rama en estudio, lo cual sugiere un revisión minuciosa de su situación contable-financiera para evitar posibles problemas futuros y salvaguardar la economía de la región y las plazas de trabajo que estas compañías proveen.

viewed = 781 times

Citas

  1. Waters, W. (2000). El desarrollo de las agroexportaciones en el Ecuador: la primera respuesta empresarial. En L. Mart´ınez (Ed.), Antolog´ıa de estudios rurales (pp. 291-306). FLACSO. https://docplayer.es/41950425- El- desarrollo-de- las- agroexportaciones-en- el- ecuador- la-primerarespuesta-empresariap.html
  2. Sotomayor, J., Apolo, J. y Quispe, J. (2018). La Provincia de El Oro: algunas consideraciones de los sectores productivos y empresariales - Estructura social y econ´omica de la provincia de El Oro. Ediciones UTMACH.
  3. Jaramillo, J. y Manguay, J. (2019). Modelo de Monitoreo de Quiebras de Empresas mediante la integraci´on del Modelo de Altman Z-Score con la Metodolog´ıa de Gr´aficos de Control en el sector textil CIIU C14 (Tesis de grado). Universidad Central del Ecuador. http://200.12.169.19/handle/25000/20122/statistics
  4. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23 (4), 589-609. doi: https://doi.org/10.2307/2978933
  5. Valencia, M., Tr´ochez, J., Vanegas, J. y Restrepo, J. (2016). Modelo para el an´alisis de la quiebra financiera en pymes agroindustriales antioque˜nas. Apuntes del CENES, 35 (62), 147-168. http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0120-30532016000200006
  6. Agarwal, V. y Taffler, R. (2008). Comparing the performance of market-based and accountingbased bankruptcy prediction models. Journal of Banking & Finance, 32 (8), 1541-1551. doi: https://doi.org/10.1016/j.jbankfin.2007.07.014
  7. Altman, E. I., Haldeman, R. G. y Narayanan, P. (1977). ZETATM analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1 (1), 29-54. doi: https://doi.org/10.1016/0378-4266(77)90017-6
  8. Altman, E. I. y Hotchkiss, E. (2010). Corporate Financial Distress and Bankruptcy (Vol. 289). John Wiley & Sons. doi: https://doi.org/10.1002/9781118267806.ch9
  9. Boritz, J. E., Kennedy, D. B. y Sun, J. Y. (2007). Predicting business failures in Canada. Accounting Perspectives, 6 (2), 141-165. doi: https://doi.org/10.1506/G8T2-K05V-1850-52U4
  10. Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. doi: https://doi.org/10.1016/j.irfa.2017.08.009
  11. Morrison, D. G. (1969). On the interpretation of discriminant analysis. Journal of Marketing Research, 156-163. doi: https://doi.org/10.2307/3149666
  12. Organizaci´on Internacional del Trabajo. (2020). El COVID-19 y el mundo del trabajo: Repercusiones y respuestas (1.a ed.). https://tinyurl.com/yaj6nan5
  13. CEPAL. (2020). Informe Especial Covid-19 - Am´erica Latina y el Caribe ante la pandemia del COVID-19. Efectos econ´omicos y sociales. https://tinyurl.com/ycemjtma
  14. Banco Interamericano de Desarrollo. (2020). Respuestas del Covid-19 desde la ciencia, la innovaci´on y el desarrollo productivo. https://tinyurl.com/yajvttph
  15. Dahik, A. (2020). El Coronavirus: Respuestas Del Mundo Y Del Ecuador. https://tinyurl.com/y965m7c3
  16. Lucio, P. (2020). Coronavirus: Acciones en el Mundo y Ecuador para salir adelante. https://www.usfq.edu.ec/sites/default/files/2020-04/koyuntura-express-7-abril-2020.pdf
  17. Decreto Ejecutivo N1061. (2020). https://minka.presidencia.gob.ec/portal/usuarios externos.jsf
  18. Decreto Ejecutivo N1056. (2020). https://minka.presidencia.gob.ec/portal/usuarios externos.jsf
  19. Montenegro, J. y Zambrano, L. (2020). Coronavirus: La cuarentena liquid´o a las peque˜nas empresas. https://tinyurl.com/ydb26qgm
  20. Romero, F., Melgarejo, Z. y Vera-Colina, M. (2015). Fracaso empresarial de las peque˜nas y medianas empresas (pymes) en Colombia. Suma de Negocios, 6 (13), 29-41. doi: https://doi.org/10.1016/j.sumneg.2015.08.003
  21. Romero, F. (2013). Alcances y limitaciones de los modelos de capacidad predictiva en el an´alisis del fracaso empresarial. AD minister, (23), 45-70. http://www.scielo.org.co/scielo.php?pid=S1692-02792013000200004&script=sci abstract&tlng=es16
  22. Paˇskeviˇcius, A. y Jurgaityt˙e, N. (2015). Reasons for bankruptcy of natural persons in Lithuania. Ekonomika, 94 (2), 144-160. doi: https://doi.org/10.15388/Ekon.2015.2.8238
  23. L´opez, F. y Pastor, I. (2015). Bankruptcy visualization and prediction using neural networks: A study of US commercial banks. Expert Systems with Applications, 42 (6), 2857-2869. doi: https://doi.org/10.1016/j.eswa.2014.11.025
  24. De Llano, P., Pi˜neiro, C. y Rodr´ıguez, M. (2016). Predicci´on del fracaso empresarial: Una contribuci´on a la s´ıntesis de una teor´ıa mediante el an´alisis comparativo de distintas t´ecnicas de predicci´on. Estudios de Econom´ıa, 43 (2), 163-198. doi: http://dx.doi.org/10.4067/S0718-52862016000200001
  25. Ryb´arov´a, D., Braunov´a, M. y Jantoˇsov´a, L. (2016). Analysis of the construction industry in the Slovak Republic by bankruptcy model. Procedia-Social and Behavioral Sciences, 230, 298-306. doi: https://doi.org/10.1016/j.sbspro.2016.09.038
  26. Garc´ıa-Mar´ı, J., S´anchez-Vidal, J. y Tomaseti-Solano, E. (2016). Fracaso empresarial y efectos contagio. Un an´alisis espacial para Espa˜na. El trimestre econ´omico, 83 (330), 429-449. https://www.redalyc.org/articulo.oa?id=31345267007
  27. Caro, N., Guardiola, M. y Ortiz, P. (2018). ´Arboles de clasificaci´on como herramienta para predecir dificultades financieras en empresas Latinoamericanas a trav´es de sus razones contables. Contadur´ıa y Administraci´on, 63 (1). doi: https://doi.org/10.22201/fca.24488410e.2018.1148
  28. Krist´of, T. y Vir´ag, M. (2020). A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary. Journal of Risk and Financial Management, 13 (2), 35. doi: https://doi.org/10.3390/jrfm13020035
  29. Depaz, C. y Lupaca, R. (2016). Origen, definici´on y modelos del fracaso empresarial: una revisi´on te´orica. Revista de Investigaci´on Valor Contable, 3 (1), 47-56. doi: https://doi.org/10.17162/rivc.v3i1.1231
  30. Mures, M. y Garc´ıa, A. (2004). Factores determinantes del fracaso empresarial en Castilla y Le´on. Revista de Econom´ıa y Empresa, 21 (51), 95-116. https://dialnet.unirioja.es/servlet/articulo?codigo=1976597
  31. Camacho, G., Salazar, A. y Le´on, C. (2013). Modelo de estimaci´on de quiebra en las empresas colombianas del sector textil y de confecci´on (Tesis de maestr´ıa). Colegio de Estudios Superiores de Administraci´on. http://hdl.handle.net/10726/1231
  32. Correa, A., Acosta, M. y Gonz´alez, A. (2003). La Insolvencia Empresarial: Un An´alisis Emp´ırico para la Peque˜na y Mediana Empresa. Revista de Contabilidad - Spanish Accounting Review, 6 (12), 47-79. https://revistas.um.es/rcsar/article/view/386811
  33. Rubio, M. (2008). An´alisis del fracaso empresarial en Andaluc´ıa. Especial referencia a la edad de la empresa. Cuadernos de Ciencias Econ´omicas y Empresariales, 1 (54), 35-56. https://dialnet.unirioja.es/servlet/articulo?codigo=2856946
  34. Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 4, 71-111. doi: https://doi.org/10.2307/2490171
  35. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 18 (1), 109-131. doi: https://doi.org/10.2307/2490395
  36. Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O. y Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. doi: https://doi.org/10.1016/j.eswa.2017.10.040
  37. Balcaen, S. y Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38 (1), 63-93. doi: https://doi.org/10.1016/j.bar.2005.09.001
  38. Hastie, T., Tibshirani, R. y Friedman, J. (2009). The Elements of Statistical Learning. Springer. doi: https://doi.org/10.1007/978-0-387-84858-7
  39. James, G., Witten, D., Hastie, T. y Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer. doi: https://doi.org/10.1007/978-1-0716-1418-1
  40. Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2 (2), 121-167. doi: https://doi.org/10.1023/A:100971592355517
  41. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81-106. doi: https://doi.org/10.1007/BF00116251
  42. Blanco, A., Irimia, A. y V´azquez, M. (2016). Dise˜no de un modelo espec´ıfico para la predicci´on de la quiebra de micro-entities. Revista de M´etodos Cuantitativos para la Econom´ıa y la Empresa, 22, 3-18. https://www.redalyc.org/articulo.oa?id=233148815001
  43. Frydman, H., Altman, E. I. y Kao, D.-L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40 (1), 269-291. doi: https://doi.org/10.2307/2328060
  44. Gepp, A., Kumar, K. y Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of Forecasting, 29 (6), 536-555. doi: https://doi.org/10.1002/for.1153
  45. Heo, J. y Yang, J. Y. (2014). AdaBoost based bankruptcy forecasting of Korean construction companies. Applied soft computing, 24, 494-499. doi: https://doi.org/10.1016/j.asoc.2014.08.009
  46. Kim, S. Y. y Upneja, A. (2014). Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models. Economic Modelling, 36, 354-362. doi: https://doi.org/10.1016/j.econmod.2013.10.005
  47. Quir´os, S. y Redondo, D. (2018). Predicci´on de fragilidad financiera para sociedades an´onimas colombianas mediante la aplicaci´on de las t´ecnicas Logit, ´arboles de clasificaci´on y boosting (Tesis de maestr´ıa). Universidad de Antioquia. https://bibliotecadigital.udea.edu.co/handle/10495/9830
  48. Shi, Y. y Li, X. (2019). A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms. Heliyon, 5 (12), e02997. doi: https://doi.org/10.1016/j.heliyon.2019.e02997
  49. Morales, D. (2015). An´alisis de un modelo estad´ıstico para evaluar la probabilidad de quiebra empresarial (Tesis de Maestr´ıa). UEES.
  50. Ch´avez, N., C´ordova, C. y Alvarado, P. (2017). Medici´on del riesgo de la gesti´on financiera de las compa˜n´ıas con la utilizaci´on del an´alisis discriminante: el caso de las industrias de la regi´on 7 del Ecuador. Revista Publicando, 4 (13), 90-107. https://revistapublicando.org/revista/index.php/crv/article/view/779
  51. Cueva, D., Cortes, S., Tapia, R., Tabi, W., Torres, J., Maza, C., Uyaguari, K. y Gonz´alez, M. (2017). Financial fragility of companies and estimation of a probabilistic model LOGIT and PROBIT: Ecuadorian case. 12th Iberian Conference on Information Systems and Technologies (CISTI), 1-6. doi: https://doi.org/10.23919/CISTI.2017.7975927
  52. P´erez, C. (2007). Miner´ıa de datos: t´ecnicas y herramientas. Editorial Paraninfo.
  53. Rokach, L. y Maimon, O. Z. (2015). Data mining with decision trees: theory and applications (2.a ed.). World scientific.
  54. Zurita, G. (2010). Probabilidad y Estad´ıstica Fundamentos y Aplicaciones. Ediciones del Instituto de Ciencias Matem´aticas ESPOL, Guayaquil-Ecuador.
  55. Guyon, I., Gunn, S., Nikravesh, M. y Zadeh, L. A. (2008). Feature extraction: Foundations and Applications (Vol. 207). Springer. doi: https://doi.org/10.1007/978-3-540-35488-8
  56. More, A. (2016). Survey of resampling techniques for improving classification performance in unbalanced datasets. doi: 10.48550/ARXIV.1608.06048
  57. Ay´us, A., Villegas, G., Castro, M. y Bocanegra, J. (2018). Modelaci´on del riesgo de insolvencia en empresas del sector salud empleando modelos Logit. Revista de M´etodos Cuantitativos para la Econom´ıa y la Empresa, 26, 128-145. https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2757
  58. Svabova, L., Durica, M. y Podhorska, I. (2018). Prediction of default of small companies in the Slovak Republic. Economics and Culture, 15 (1), 88-95. doi: https://doi.org/10.2478/jec-2018-0010
  59. Durica, M., Frnda, J. y Svabova, L. (2019). Decision tree based model of business failure prediction for Polish companies. Oeconomia Copernicana, 10 (3), 453-469. doi: https://doi.org/10.24136/oc.2019.022
  60. Durica, M., Valaskova, K. y Janoskova, K. (2019). Logit business failure prediction in V4 countries. Engineering Management in Production and Services, 11 (4), 54-64. doi: https://doi.org/10.2478/emj-2019-003318
  61. Korol, T. (2019). Dynamic bankruptcy prediction models for European enterprises. Journal of Risk and Financial Management, 12 (4), 185. doi: https://doi.org/10.3390/jrfm12040185
  62. Begovi´c, S. y Boni´c, L. (2020). DEVELOPING A MODEL TO PREDICT CORPORATE BANKRUPTCY USING DECISION TREE IN THE REPUBLIC OF SERBIA. Facta Universitatis, Series: Economics and Organization, 17 (2), 127-139. doi: https://doi.org/10.22190/FUEO191118010V
  63. Shrivastava, S., Jeyanthi, P. y Singh, S. (2020). Failure prediction of Indian Banks using SMOTE, Lasso regression, bagging and boosting. Cogent Economics & Finance, 8 (1), 1729569. doi: https://doi.org/10.1080/23322039.2020.1729569
  64. Zoriˇc´ak, M., Gnip, P., Drot´ar, P. y Gazda, V. (2020). Bankruptcy prediction for small-and medium-sized companies using severely imbalanced datasets. Economic Modelling, 84, 165-176. doi: https://doi.org/10.1016/j.econmod.2019.04.003