Estudio cinético de la reacción entre el 3,4-Dihidroxibenzaldehído y el radical hidroperoxilo en disolución: Un enfoque teórico

Contenido principal del artículo

Santiago Javier Alvarez Guerrero

Resumen

En este trabajo se estudió la actividad antioxidante del 3,4-Dihidroxibenzaldehído frente al radical hidroperoxilo mediante la teoría de los funcionales de la densidad. Las energías de las barreras de las reacciones se calcularon utilizando la teoría del estado de transición con el nivel de teoría M05-2X/6-311+G(d,p). Los resultados del análisis termoquímico y cinético muestran que el mecanismo de transferencia de hidrógeno es la vía principal por la cual el aldehído disminuye la reactividad del radical hidroperoxilo tanto en medio acuoso como en medio no polar.

Detalles del artículo

Cómo citar
Alvarez Guerrero, S. J. (2019). Estudio cinético de la reacción entre el 3,4-Dihidroxibenzaldehído y el radical hidroperoxilo en disolución: Un enfoque teórico. ACI Avances En Ciencias E Ingenierías, 11(3). https://doi.org/10.18272/aci.v11i3.1411
Sección
SECCIÓN A: CIENCIAS EXACTAS Y FÍSICAS
Biografía del autor/a

Santiago Javier Alvarez Guerrero, Centro de Investigación y de Estudios Avanzados del IPN

Departamento de Física Aplicada, programa de Doctorado en Ciencias.

Citas

[1] Aikens, J., & Dix, T. (1991). Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. The Journal of Biological Chemistry, 266(23), 15091-15098.

[2] Alabugin, I. V., Gilmore, K., & Manoharan, M. (2011). Rules for anionic and radical ring closure of alkynes. Journal of the American Chemical Society, 133(32), 12608-12623.

[3] Alberto, M. E., Russo, N., Grand, A., & Galano, A. (2013). A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Physical Chemistry Chemical Physics, 15(13), 4642-4650.

[4] Arnaut, L. G., Formosinho, S. J., & Burrows, H. (2007). Chemical Kinetics: from Molecular Structure to Chemical Reactivity (1st ed.). The Netherlands: Elsevier.

[5] Asperger, S. (2003). Chemical Kinetics and Inorganic Reaction Mechanisms (2 nd ed.). The USA: Springer

[6] Atkins, P., Paula, J. d., & Peter Atkins, J. d. P. (2010). Atkins's Physical Chemistry (O. U. Press Ed. 9th ed.). The USA.

[7] Bartosz, G. (2009). Reactive oxygen species: destroyers or messengers? Biochemical pharmacology, 77(8), 1303-1315.

[8] Bielski, B., Arudi, R. L., & Sutherland, M. W. (1983). A study of the reactivity of HO2/O2-with unsaturated fatty acids. Journal of Biological Chemistry, 258(8), 4759-4761.

[9] Bielski, B. H., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O− 2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100.

[10] Binkley, J. S., Pople, J. A., & Hehre, W. J. (1980). Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. Journal of the American Chemical Society, 102(3), 939-947.

[11] Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S., Parker, N. (2004). Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 37(6), 755-767.

[12] Buonocore, G., Perrone, S., & Tataranno, M. L. (2010). Oxygen toxicity: chemistry and biology of reactive oxygen species. Paper presented at the Seminars in Fetal and Neonatal Medicine.

[13] Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74(17), 2157-2184.

[14] Collins, F. C., & Kimball, G. E. (1949). Diffusion-controlled reaction rates. Journal of Colloid and Interface Science, 4(4), 425-437.

[15] Cheng, G.-J., Zhang, X., Chung, L. W., Xu, L., & Wu, Y.-D. (2015). Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. Journal of the American Chemical Society, 137(5), 1706-1725.

[16] Choe, E., & Min, D. B. (2005). Chemistry and reactions of reactive oxygen species in foods. J. Food Sci., 70(9), R142-R159.

[17] Dávalos, A., Gómez-Cordovés, C., & Bartolomé, B. (2004). Extending applicability of the oxygen radical absorbance capacity (ORAC− fluorescein) assay. Journal of Agricultural and Food Chemistry, 52(1), 48-54.

[18] Dzib E., C. J. L., Ortíz-Chi F., Pan S., Galano A., Merino G. (2018). "Eyringpy: A Program to Calculate Rate Constants in the Gas Phase and in Solution". International Journal of Quantum Chemistry.
[19] Eckart, C. (1930). The penetration of a potential barrier by electrons. Physical review, 35(11), 1303.

[20] Evans, M. G., & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, 31, 875-894.

[21] Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3(2), 107-115.

[22] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., . Fox, D. J. (2009). Gaussian (Version 09 rev. A. 02). Wallingford, CT: Gaussian, Inc. Retrieved from http://gaussian.com/

[23] Fujisaki, N., Ruf, A., & Gäumann, T. (1987). Barrier permeabilities for a symmetric Eckart potential as studied by the kinetic isotope effects for hydrogen/deuterium abstraction from neopentane by hydrogen atoms in the gas phase. Journal of the Chemical Society, Faraday Transactions, 83(11), 2053-2065.

[24] Galano, A., Alvarez-Idaboy, J. R., & Vivier-Bunge, A. (2006). Computational quantum chemistry: A reliable tool in the understanding of gas-phase reactions. Journal of Chemical Education, 83(3), 481.

[25] Galano, A., & Alvarez‐Idaboy, J. R. (2013). A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. Journal of computational chemistry, 34(28), 2430-2445.

[26] Galano, A., & Francisco-Marquez, M. (2009). Reactions of OOH radical with β-carotene, lycopene, and torulene: hydrogen atom transfer and adduct formation mechanisms. Journal of Physical Chemistry B, 113(32), 11338-11345.

[27] Galano, A., & Pérez-González, A. (2012). On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theoretical Chemistry Accounts, 131(9), 1265.

[28] Gao, J.-W., Yamane, T., Maita, H., Ishikawa, S., Iguchi-Ariga, S. M., Pu, X.-P., & Ariga, H. (2011). DJ-1–Mediated Protective Effect of Protocatechuic Aldehyde Against Oxidative Stress in SH-SY5Y Cells. Journal of pharmacological sciences, 115(1), 36-44.

[29] Gonzalez, C., & Schlegel, H. B. (1989). An improved algorithm for reaction path following. The Journal of Chemical Physics, 90(4), 2154-2161.

[30] Gorban, A., & Yablonsky, G. (2015). Three waves of chemical dynamics. Mathematical Modelling of Natural Phenomena, 10(5), 1-5.

[31] Gu, M., Wang, X., Su, Z., & Ouyang, F. (2007). One-step separation and purification of 3, 4-dihydroxyphenyllactic acid, salvianolic acid B and protocatechualdehyde from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography. Journal of Chromatography A, 1140(1-2), 107-111.

[32] Gus' kova, R. A., Ivanov, I. I., Kol'tover, V. K., Akhobadze, V. V., & Rubin, A. B. (1984). Permeability of bilayer lipid membranes for superoxide (O2−) radicals. Biochimica et Biophysica Acta - Biomembranes, 778(3), 579-585.

[33] Halliwell, B. (2007). Biochemistry of oxidative stress: Portland Press Limited.

[34] Henriksen, N. E., & Hansen, F. Y. (2008). Theories of Molecular Reaction Dynamics: the Microscopic foundation of Chemical Kinetics (1st ed.). The USA: Oxford University Press on Demand.

[35] Jeong, J. B., Hong, S. C., & Jeong, H. J. (2009). 3, 4-Dihydroxybenzaldehyde purified from the barley seeds (Hordeum vulgare) inhibits oxidative DNA damage and apoptosis via its antioxidant activity. Phytomedicine, 16(1), 85-94.

[36] Kakkar, S., & Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. ISRN pharmacology.

[37] Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.

[38] Laidler, K. J. (2014). Chemical Kinetics (3rd ed.): Pearson.

[39] Lee, J., Koo, N., & Min, D. B. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive reviews in food science and food safety, 3(1), 21-33.

[40] Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916-4922.

[41] Leopoldini, M., Pitarch, I. P., Russo, N., & Toscano, M. (2004). Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. The Journal of Physical Chemistry A, 108(1), 92-96.

[42] Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288-306.

[43] Levine, I. N. (2014). Quantum Chemistry (7th ed.): Pearson.

[44] Li, C., Jiang, W., Zhu, H., & Hou, J. (2012). Antifibrotic effects of protocatechuic aldehyde on experimental liver fibrosis. Pharmaceutical biology, 50(4), 413.

[45] Liu, Y. P., Lu, D. H., Gonzalez-Lafont, A., Truhlar, D. G., & Garrett, B. C. (1993). Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions. Journal of the American Chemical Society, 115(17), 7806-7817.

[46] Logan, S. R. (2000). Fundamentos de Cinética Química. Madrid, España: Addison Wesley.

[47] Losada-Barreiro, S., & Bravo-Diaz, C. (2017). Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European journal of medicinal chemistry, 133, 379-402.

[48] Marcus, R. A. (1956). On the theory of oxidation‐reduction reactions involving electron transfer. I. The Journal of Chemical Physics, 24(5), 966-978.

[49] Marcus, R. A. (1993). Electron transfer reactions in chemistry. Theory and experiment. Reviews of Modern Physics, 65(3), 599.

[50] Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113(18), 6378-6396.

[51] Maroz, A., Anderson, R. F., Smith, R. A., & Murphy, M. P. (2009). Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. Free Radical Biology & Medicine, 46(1), 105-109.

[52] Moon, C. Y., Ku, C. R., Cho, Y. H., & Lee, E. J. (2012). Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis. Biochemical and biophysical research communications, 423(1), 116-121.

[53] Nelsen, S. F., Blackstock, S. C., & Kim, Y. (1987). Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. Journal of the American Chemical Society, 109(3), 677-682.

[54] Nelsen, S. F., Weaver, M. N., Luo, Y., Pladziewicz, J. R., Ausman, L. K., Jentzsch, T. L., & O'Konek, J. J. (2006). Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. The Journal of Physical Chemistry A, 110(41), 11665-11676.

[55] Peverati, R., & Truhlar, D. G. (2012). Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory. Physical Chemistry Chemical Physics, 14(32), 11363-11370.

[56] Rosini, M., Simoni, E., Milelli, A., Minarini, A., & Melchiorre, C. (2013). Oxidative Stress in Alzheimer’s Disease: Are We Connecting the Dots? Miniperspective. Journal of medicinal chemistry, 57(7), 2821-2831.

[57] Sawyer, D. T., & Valentine, J. S. (1981). How super is superoxide? Accounts of chemical research, 14(12), 393-400.

[58] Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. Journal of Nutrition, 130(8), 2073S-2085S.

[59] Silva, T., Reis, J., Teixeira, J., & Borges, F. (2014). Alzheimer's disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing research reviews, 15, 116-145.

[60] Smoluchowski, M. v. (1918). Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für physikalische Chemie, 92(1), 129-168.

[61] Stevenson, D., & Hurst, R. (2007). Polyphenolic phytochemicals–just antioxidants or much more? Cellular and Molecular Life Sciences, 64(22), 2900-2916.

[62] Szabo, A., & Ostlund, N. S. (2012). Modern quantum chemistry: introduction to advanced electronic structure theory: Courier Corporation.

[63] Truhlar, D. G. (1985). Nearly encounter-controlled reactions: The equivalence of the steady-state and diffusional viewpoints. Journal of Chemical Education, 62(2), 104.

[64] Upadhyay, S. K. (2007). Chemical Kinetics and Reaction Dynamics. India: Springer

[65] Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44-84.

[66] Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160(1), 1-40.

[67] Wei, G., Guan, Y., Yin, Y., Duan, J., Zhou, D., Zhu, Y., Wen, A. (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Journal of Inflammation, 36(3), 592-602.

[68] Wright, M. R. (2004). An Introduction to Chemical Kinetics. The UK: Wiley

[69] Xiao, R., Gao, L., Wei, Z., Spinney, R., Luo, S., Wang, D., Yang, W. (2017). Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach. Environmental Pollution, 231, 1446-1452.

[70] Zhang, Y., Stecher, T., Cvitaš, M. T., & Althorpe, S. C. (2014). Which Is Better at Predicting Quantum-Tunneling Rates: Quantum Transition-State Theory or Free-Energy Instanton Theory? Journal of Physical Chemistry Letters, 5(22), 3976-3980.

[71] Zhao, X., Zhai, S., An, M.-S., Wang, Y.-H., Yang, Y.-F., Ge, H.-Q., . . . Pu, X.-P. (2013). Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson’s disease. PLoS One, 8(10), e78220.

[72] Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2(2), 364-382.

[73] Zhou, Z., Liu, Y., Miao, A.-D., & Wang, S.-Q. (2005). Protocatechuic aldehyde suppresses TNF-α-induced ICAM-1 and VCAM-1 expression in human umbilical vein endothelial cells. European journal of pharmacology, 513(1), 1-8.

[74] Zhou, Z., Zhang, Y., Ding, X.-R., Chen, S.-H., Yang, J., Wang, X.-J., Wang, S.-Q. (2007). Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antiviral research, 74(1), 59-64.