Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 17 No. 1 (2025)

Efficiency in the classification of chest X-ray images through generative parallelization of the Neural Architecture Search

Submitted
November 25, 2024
Published
2025-05-09

Abstract

Explore GenNAS for chest X-ray classification in lung diseases, leveraging novel parallel training methods for enhanced accuracy and efficiency. Medical image classification for pulmonary pathologies from chest X-rays is traditionally time-consuming. GenNAS, using GPT-4's generative capabilities, automates optimal architecture learning from data.  This study investigates parallelization and generative algorithms to optimize neural network architectures for chest X-ray classification, analyzing their impact on the NAS algorithm using the ChexPert dataset. The study uses the CheXpert dataset with 224,316 chest X-rays to classify five lung disease pathologies. GenNASXRays evaluates 6561 architecture possibilities in an 8-layer search space, with AUC-ROC and Precision-Recall plots as metrics. Training on 187,641 images, the sequential algorithm took 190.2 hours for an AUC-ROC of 0.869. In parallel execution on two GPUs, an AUC-ROC of 0.87 was achieved in 127.09 hours, highlighting the efficiency of parallelization.       

References

  1. Zheng, M., Su, X., You, S., Wang, F., Qian, C., Xu, C., & Albanie, S. (2023). Can GPT-4 perform neural architecture search? arXiv preprint arXiv:2304.10970. https://doi.org/10.48550/arXiv.2304.10970
  2. Zhang, S., Gong, C., Wu, L., Liu, X., & Zhou, M. (2023). AutoML-GPT: Automatic Machine Learning with GPT. arXiv preprint arXiv:2305.02499. https://doi.org/10.48550/arXiv.2305.02499
  3. Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2023). AutoML in the age of Large Language Models: Current challenges, future opportunities and risks. arXiv preprint arXiv:2306.08107. https://doi.org/10.48550/arXiv.2306.08107
  4. Matsuoka, S. (2018, June). Cambrian explosion of computing and big data in the post-Moore era. In Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing (pp. 105-105). https://doi. org/10.1145/3208040.3225055
  5. Onwusinkwue, S., Osasona, F., Ahmad, I. A. I., Anyanwu, A. C., Dawodu, S. O., Obi, O. C., & Hamdan, A. (2024). Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization. World Journal of Advanced Research and Reviews, 21(1), 2487-2799. https://doi.org/10.30574/wjarr.2024.21.1.0347
  6. Hidalgo, I., Fenández-de_Vega, F., Ceberio, J., Garnica, O., Velasco, J. M., Cortés, J. C., Villanueva, R., & Díaz, J. (2023). Sustainable artificial intelligence systems: An energy efficiency approach. TechRxiv. https://doi.org/10.36227/ techrxiv.24610899
  7. Rao, B. C. (2024). Frugal computing for artificial intelligence and other applications. In Frugal engineering. Design science and innovation. Springer. https://link.springer.com/chapter/10.1007/978-981-99-9700-8_11
  8. Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A review of the role of artificial intelligence in healthcare. Journal of Personalized Medicine, 13(6), 951. https://doi.org/10.3390/jpm13060951
  9. Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal, 8(2), e188-e194. https://doi.org/10.7861/fhj.2021-0095
  10. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. https://doi.org/10.7861/futurehosp.6-2-94
  11. Calciu, I., Talha Imran, M., Puddu I., Kashyap, S., Al Maruf, H., Mutlu, O., & Kolli, A. (2023). Using local cache coherence for disaggregated memory systems. SIGOPS Oper. Syst. Rev. 57, 1 (June 2023), 21–28. ACM SIGOPS Operating Systems Review, 57(1), 21-28. https://doi.org/10.1145/3606557.3606561

Downloads

Download data is not yet available.