Articles
Vol. 17 No. 1 (2025)
Toward climate-resilient agriculture: smart irrigation systems and soil moisture monitoring for crops in the Andean Region
Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías
Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías
-
Submitted
-
April 25, 2024
-
Published
-
2025-05-08
Abstract
Climate change and global warming pose significant challenges for agriculture, especially in an increasingly interconnected world reliant on basic commodities. This paper examines the implications of climate change on agriculture, focusing on the Andean region of Latin America, with particular emphasis on Ecuador. The effects of climate change on agricultural production, water resource availability, and potential technological solutions are discussed. Research demonstrating both the positive and negative effects of climate change on agriculture is examined, underscoring the importance of finding technological solutions to mitigate these impacts. The need to improve agricultural productivity and water use efficiency, particularly in climate change-vulnerable regions such as the Ecuadorian Andes, is emphasized. This paper proposes the development of intelligent irrigation systems based on innovative technologies, such as cosmic neutron detection, to precisely and in real-time monitor soil moisture. The importance of implementing these technologies in the region to enhance agricultural productivity, prevent food crises, and adapt to climate change is highlighted. The conclusion emphasizes the necessity of collaboration between research institutions and policymakers to effectively and sustainably address these challenges
References
- Zhao, J., Bindi, M., Eitzinger, J., Ferrise, R., Gaile, Z., Gobin, A., Holzkämper, A., Kersebaum, K.-C., Kozyra, J., Kriaučiūnienė, Z., Loit, E., Nejedlik, P., Nendel, C., Niinemets, Ü., Palosuo, T., Peltonen-Sainio, P., Potopová, V., Ruiz-Ramos, M., Reidsma, P., Rijk, B., Trnka, M., van Ittersum, M. K., & Olesen, J. E. (2022). Priority for climate adaptation measures in European crop production systems. European Journal of Agronomy, 138, 126516. https://doi. org/10.1016/j.eja.2022.126516.
- Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G., & Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 11(4), 306–312. https://doi.org/10.1038/ s41558-021-01000-1
- International Atomic Energy Agency. (2015). ARCAL - Regional Strategic Profile for Latin America and the Caribbean (RSP) 2016–2021 (IAEA-TECDOC--1763(S)). International Atomic Energy Agency. https://www.iaea.org/
- Sharp, R. E., & Davies, W. J. (1985). Root growth and water uptake by maize plants in drying soil. Journal of Experimental Botany, 36(9), 1441–1456. https://doi.org/10.1093/jxb/36.9.1441
- Chukalla, A. D., Krol, M. S., & Hoekstra, A. Y. (2015). Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies, and mulching. Hydrology and Earth System Sciences, 19(12), 4877– 4891. https://doi.org/10.5194/hess-19-4877-2015
- Lema Mancero, C. R. (2022). Eficiencia de aplicación de tres métodos de riego en el cultivo de maíz (Zea mays L.) variedad INIAP-101 [Tesis de grado, Escuela Superior Politécnica de Chimborazo]. http://dspace.espoch.edu.ec/ handle/123456789/16550
- Gago, J., Douthe, C., Florez-Sarasa, I., Escalona, J. M., Galmés, J., Fernie, A. R., Flexas, J., & Medrano, H. (2014). Opportunities for improving leaf water use efficiency under climate change conditions. Plant Science, 226, 108–119. https://doi.org/10.1016/j.plantsci.2014.04.007
- UNESCO. (2021). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2021: El valor del agua; datos y cifras (SC-2021/WS/3). WWAP. https://unesdoc.unesco.org/ark:/48223/pf0000375751_spa
- Instituto Nacional de Estadística y Censos (INEC). (2020). Información agroambiental y tecnificación agropecuaria, módulo ESPAC 2018. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Modulo_ Ambiental_ESPAC_2018/RESULT_MOD_AMB_ESPAC_2018.pdf
- Banco Mundial. ( 14 de julio de 2021). En Ecuador, el riego tecnificado equivale a cultivos más sostenibles y mejor alimentación. World Bank. https://www.bancomundial.org/es/news/feature/2021/07/14/en-ecuador-el-riegotecnificado-equivale-a-cultivos-m-s-sostenibles-y-mejor-alimentaci-n
- Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martín-Neira, M., & Mecklenburg, S. (2010). The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5), 666–687. https://doi.org/10.1109/ JPROC.2010.2043032
- Singh, A., & Gaurav, K. (2023). Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images. Scientific Reports, 13(1), 2251. https://doi.org/10.1038/s41598-023-28939-9
- Wallbank, J. R., Cole, S. J., Moore, R. J., Anderson, S. R., & Mellor, E. J. (2021). Estimating snow water equivalent using cosmic‐ray neutron sensors from the COSMOS‐UK network. Hydrological Processes, 35(5), e14048. https://doi. org/10.1002/hyp.14048
- Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone Journal, 16(8). https://doi.org/10.2136/vzj2017.04.0086
- Köhli, M., Schrön, M., Zacharias, S., & Schmidt, U. (2023). URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research. Geoscientific Model Development, 16(2), 449–477. https://doi.org/10.5194/ gmd-16-449-2023
- Stoykov, A., Mosset, J. B., Greuter, U., Hildebrandt, M., & Schlumpf, N. (2015). A SiPM-based ZnS:6LiF scintillation neutron detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 787, 361–366. https://doi.org/10.1016/j.nima.2015.01.076
- Bodini, I., Paderno, D., Pagano, D., Donzella, A., Bonomi, G., Zenoni, A., & Villa, V. (2022). Design Requirements Assessment in the COMMAND (Compact Multi-purpose Muon and Neutron Detector) Project. En S. Gerbino, A. Lanzotti, M. Martorelli, R. Mirálbes Buil, C. Rizzi, & L. Roucoules (Eds.), Advances on Mechanics, Design Engineering and Manufacturing IV (pp. 367–379). Springer. https://doi.org/10.1007/978-3-031-15928-2_32
- Stevanato, L., Baroni, G., Cohen, Y., Fontana, C. L., Gatto, S., Lunardon, M., Marinello, F., Moretto, S., & Morselli, L. (2019). A novel cosmic-ray neutron sensor for soil moisture estimation over large areas. Agriculture, 9(9), 202. https:// doi.org/10.3390/agriculture9090202
- Asorey, H., Núñez, L. A., Suárez-Durán, M., Torres-Niño, L. A., Rodríguez-Pascual, M., Rubio-Montero, A. J., & MayoGarcía, R. (2016). The Latin American Giant Observatory: A successful collaboration in Latin America based on cosmic rays and computer science domains. In 2016 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 707–713). IEEE. https://doi.org/10.1109/CCGrid.2016.110
- Santillán, O. (2018). Agricultura de precisión (p. 15). Oficina de Información Científica y Tecnológica para el Congreso de la Unión (INCyTU). https://www.foroconsultivo.org.mx/INCyTU/documentos/Completa/INCYTU_18-015.pdf
Downloads
Download data is not yet available.