The Gravid-Aedes Trap as an alternative for surveillance of the Aedes aegypti mosquito, the vector of dengue on the Galapagos Islands
Published 2021-04-06
Keywords
- vector surveillance,
- Galapagos archipelago,
- GAT traps,
- dengue fever,
- chikungunya
- Zika ...More
How to Cite
Abstract
The Aedes aegypti mosquito is a two-winged insect of medical importance as it is the main vector of several arboviruses including dengue, chikungunya and Zika. This species is diurnal and is adapted to live close to the human population in urban settings. In 1988, the first dengue outbreak occurred in Ecuador. Since then, dengue has been endemic, causing peaks of transmission every four or five years. On the Galapagos Islands, this species was introduced in 2002 when the first cases were reported on Santa Cruz Island. Subsequently, a major epidemic outbreak occurred in 2010 on San Cristóbal Island, and since then, sporadic cases have occurred every year. A few cases of chikungunya and Zika have also been reported in past years. In the archipelago, the activities to reduce the mosquito populations have been restricted to vector control through abatization campaigns, to kill the mosquito larva, and fumigation with the insecticide Deltamethrin, to kill the adults. Mosquito surveillance initiatives have not been developed; nevertheless, they are crucial to be able to evaluate the best vector control strategies and choose the most adequate measures to eliminate the vector mosquitoes and reduce disease transmission. The Gravid-Aedes Trap is presented as an easy-to-use, passive monitoring tool for vector surveillance. It is affordable and does not require electricity. Evaluation studies in Brazil have shown the usefulness of this trap to conduct vector surveillance and vector control. A pilot study is herein reported with 10 GAT traps that were placed in Puerto Baquerizo Moreno, San Cristóbal Island and in Puerto Ayora, Santa Cruz Island to carry out mosquito surveillance. Preliminary results suggest that the GAT traps may be effective for collecting Aedes aegypti mosquitoes and thus of potential use to complement the vector control strategies that are routinely carried out on the Galapagos Islands. Other mosquito species collected were Culex quinquefasciatus and Aedes taeniorhynchus. Future large-scale studies are necessary to further evaluate the usefulness of this new trap.
Downloads
References
- Paupy, C., Le Goff, G., Brengues, C., et al. (2012). Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infection, Genetics and Evolution, Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 12(6),1260-1269. DOI: https://doi.org/10.1016/j.meegid.2012.04.012.
- Rai, K S. 1991. Aedes albopictus in the Americas. Annual Review of Entomology (en prensa).
- Bonizzoni, M., Gasperi, G., Chen, X., & James, A. A. (2013). The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology 29(9), 460-468.
- Jones, R., Kulkarni, M. A., Davidson, T., RADAM-LAC Research Team, & Talbot, B. (2020). Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PloS one 15(2), e0220753. DOI: https://doi.org/10.1371/journal.pone.0220753.
- Brown, J. E., Evans, B. R., Zheng, W., Obas, V., Barrera"Martínez, L., Egizi, A., Zhao, H., Caccone, A., & Powell, J. R. (2014). Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68(2), 514-525.
- Brathwaite Dick, O., San Martín, J. L., Montoya, R. H., del Diego, J., Zambrano, B., & Dayan, G. H. (2012). The history of dengue outbreaks in the Americas. The American journal of tropical medicine and hygiene 87(4), 584-593. DOI: https://doi.org/10.4269/ajtmh.2012.11-0770
- García, E. (1953). Progresos en la lucha contra la fiebre amarilla en el Ecuador [Progress in the struggle against yellow fever in Ecuador]. Boletín de la oficina sanitaria panamericana. Recuperado de: https://iris.paho.org/handle/10665.2/14686
- Ryan, S. J., Lippi, C. A., Nightingale, R., Hamerlinck, G., Borbor-Córdova, M. J., Cruz B, M., Ortega, F., León, R., Waggoner, E., & Stewart-Ibarra, A. M. (2019). Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos islands, Ecuador. International Journal of Environmental Research and Public Health, 16(5), 682.
- Real-Cotto, J. J., Regato Arrata, M. E., Burgos Yépez, V. E., & Jurado Cobeña, E. T. (2017). Evolución del virus dengue en el Ecuador: Período 2000 a 2015 [Evolution of the dengue virus in Ecuador Period 2000 to 2015]. In Anales de la Facultad de Medicina 78(1), pp. 29-35.
- MSP (Ministerio de Salud Pública). Dirección Nacional de Vigilancia Epidemiológica; Ministerio de Salud. (2020). Gaceta-Vectores SE 24/2020. Recuperado de: https://www.salud.gob.ec/gacetas-vectoriales-2020/
- Ponce, P., Morales, D., Argoti, A., & Cevallos, V. E. (2018). First Report of Aedes (Stegomyia) albopictus (Skuse)(Diptera: Culicidae), the Asian Tiger Mosquito, in Ecuador. Journal of Medical Entomology 55(1), 248-249.
- Fundación Charles Darwin (Septiembre, 2020). Galapagos species Checklist. Recuperado de: https://www.darwinfoundation.org/en/datazone/checklist?species=11720#introduction
- Parra, F. (2014). Vigilancia de la salud: Registro histórico del dengue en la provincia de Galápagos [Health surveillance: Historic register of dengue in the province of Galapagos]. Quito: Ministerio de Salud Pública del Ecuador.
- León, R., Molina, C., Waters, W., Ortega, L. (2019). Aedes aegypti: Distribución y epidemiología del dengue, Zika y Chikungunya en Galápagos. Presentación oral al IV Simposio de Investigación y Conservación, SICG, GAIAS y GSC. 25 y 26 de junio de 2019.
- Asigau, S., Hartman, D. A., Higashiguchi, J. M., & Parker, P. G. (2017). The distribution of mosquitoes across an altitudinal gradient in the Galapagos islands. Journal of Vector Ecology 42(2), 243-253.
- Tedjou, A.N., Kamgang, B., Yougang, A.P., Wilson-Bahun, T.A., Njiokou, F., & Wondji, C.S. (2020). Patterns of Ecological Adaptation of Aedes aegypti and Aedes albopictus and Stegomyia Indices Highlight the Potential Risk of Arbovirus Transmission in Yaoundé, the Capital City of Cameroon. Pathogens 9, 491.
- Eiras, A. E., Buhagiar, T. S., & Ritchie, S. A. (2014). Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). Journal of medical entomology 51(1), 200-209. DOI: https://doi.org/10.1603/me13104.
- Eiras, A., Resende, M., Acebal, J. & Paixão, K. (2018). New Cost-Benefit of Brazilian Technology for Vector Surveillance Using Trapping System. 10.5772/intechopen.78781. DOI: http://dx.doi.org/10.5772/intechopen.78781
- Eiras, A. E., Pires, S. F., Staunton, K. M., Paixão, K. S., Resende, M. C., Silva, H. A., Rocha, I. G., Oliveira, B. A., Peres, A. M., Drumond, B. P., & Ritchie, S. A. (2018). A high-risk Zika and dengue transmission hub: virus detections in mosquitoes at a Brazilian university campus. Parasites & vectors 11(1), 359. DOI: https://doi.org/10.1186/s13071-018-2883-8.