Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 17 No. 1 (2025)

Phytoplankton diversity and current trophic status of a high mountain lake in the province of Imbabura, Ecuador

Submitted
July 17, 2024
Published
2025-04-15

Abstract

The objective of this research was to assess the phytoplankton diversity of San Pablo Lake and, based on its composition, determine its current trophic status. Samples were collected from May to August 2023 to account for seasonal variations. Taxonomic identification and photographic records were obtained using an inverted microscope equipped with a camera. A total of 77 species of microalgae and cyanobacteria, belonging to eight phyla, were identified. The most representative groups were Heterokontophyta (31 % of total species), followed by Chlorophyta (25%) and Charophyta (17 %). Cell density peaked in May, reaching 75,535 org/mL, coinciding with the highest rainfall levels. Microcystis aeruginosa, a potentially toxic cyanobacterium, was detected. Nitrogen and total phosphorus levels were elevated compared to other lentic ecosystems in the region. The saprobic index and organic pollution index confirm significant contamination and high organic pollution in San Pablo Lake, classifying it as eutrophic.

References

  1. Limburg, K. E. (2009). Aquatic ecosystem services. En G. E. Likens (Ed.), Encyclopedia of Inland Waters (pp. 25-30). Oxford: Academic Press.
  2. Yánez, L., Franco, P., Bastidas, W., & Córdova, V. (2017). Resumen del plan nacional de gestión integrada e integral de los recursos hídricos y de las cuencas y microcuencas hidrográficas de Ecuador. AQUA-LAC, 9(2), 124-132.
  3. Naranjo-Silva, S. (2024). A hydropower development perspective in Ecuador: Past, present, and future. La Granja, 39(1), 63-77. https://doi.org/10.17163/lgr.n39.2024.04
  4. Heino, J., Alahuhta, J., Bini, L. M., Cai, Y., Heiskanen, A. S., Hellsten, S., Kortelainen, P., Kotamäki, N., Tolonen, K. T., Vihervaara, P., Vilmi, A., & Angeler, D. G. (2021). Lakes in the era of global change: Moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 96(1), 89-106. https://doi.org/10.1111/brv.12647
  5. Smol, J. P. (2019). Under the radar: Long-term perspectives on ecological changes in lakes. Proceedings of the Royal Society B, 286. https://doi.org/10.1098/rspb.2019.0834
  6. Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioglu, M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D., Cardoso, A. C., Couture, R. M., Cremona, F., Zwart, D., … Hering, D. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 4(8), 1060–1068. https://doi.org/10.1038/s41559-020-1216-4
  7. Aguirre, W. E., Alvarez-Mieles, G., Anaguano-Yancha, F., Burgos Morán, R., Cucalón, R. V., Escobar-Camacho, D., Jácome-Negrete, I., Jiménez Prado, P., Laaz, E., Miranda-Troya, K., Navarrete-Amaya, R., Nugra Salazar, F., Revelo, W., Rivadeneira, J. F., Valdiviezo Rivera, J., & Zárate Hugo, E. (2021). Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. Journal of Fish Biology, 99(4), 1158-1189. https://doi.org/10.1111/jfb.14844
  8. Lampert, W., & Sommer, U. (2007). Limnoecology: The ecology of lakes and streams. Oxford University Press.
  9. Howarth, R., & Paerl, H. W. (2008). Coastal marine eutrophication: Control of both nitrogen and phosphorus is necessary. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 103. https://doi.org/10.1073/pnas.0807266106
  10. Lyu, J. Q., Luo, P. P., Mo, S. H., Zhou, M. M., Shen, B., & Nover, D. (2019). A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quaternary International, 527, 1–11. https://doi.org/10.1016/j.quaint.2019.03.027
  11. Withers, P., Neal, C., Jarvie, H., & Doody, D. (2014). Agriculture and eutrophication: Where go we go from here? Sustainability, 6(9). https://doi.org/10.3390/su6095853
  12. Liang, Z., Xu, Y., Qiu, Q., Liu, Y., Lu, W., & Wagner, T. (2021). A framework to develop joint nutrient criteria for lake eutrophication management in eutrophic lakes. Journal of Hydrology, 594. https://doi.org/10.1016/j.jhydrol.2020.125883
  13. Wetzel, R. G. (1981). Limnología. Ediciones Omega.
  14. Bravo, E. (2014). La biodiversidad en el Ecuador. Editorial Universitaria Abya-Yala.
  15. Ptacnik, R., Solimini, A. G., & Brettum, P. (2009). Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia, 633, 75–82. https://doi.org/10.1007/s10750-009-9870-1
  16. De la Lanza-Espino, G., Hernández, P. S., & Carvajal, P. J. L. (2000). Organismos indicadores de la calidad del agua y de la contaminación (bioindicadores). Editorial Plaza y Valdés.
  17. Vélez-Azañero, A., Lozano, S., & Cáceres-Torres, K. (2016). Diversidad de fitoplancton como indicador de calidad de agua en la cuenca baja del río Lurín, Lima, Perú. Ecología Aplicada, 15(2), 69-79. http://dx.doi.org/10.21704/rea.v15i2.745
  18. Casallas, J., & Gunkel, G. (2001). Algunos aspectos limnológicos de un lago altoandino: El lago San Pablo, Ecuador. Limnetica, 20(2), 215-232. https://www.limnetica.info/documentos/limnetica/limnetica-20-2-p-215.pdf
  19. Terneus Jácome, E. (2017). Vegetación acuática y estado trófico de las lagunas andinas de San Pablo y Yahuarcocha, provincia de Imbabura, Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 35(1-2), 121-131. https://doi.org/10.26807/remcb.v35i1-2.255
  20. Casallas, J. (2005). Investigaciones limnológicas en el lago San Pablo, un lago de alta montaña en Ecuador [Tesis de doctorado, Technischen Universität Berlin]. https://depositonce.tu-berlin.de/items/0c573865-95df-4285-8fd4-4e624409a6e4
  21. Gunkel, G. (2000). Limnology of an equatorial high mountain lake in Ecuador, Lago San Pablo. Limnologica, 30(2), 113-120. https://doi.org/10.1016/S0075-9511(00)80005-5
  22. Gunkel, G., & Casallas, J. (2002). Limnological of an equatorial high mountain lake, Lago San Pablo, Ecuador: Limitation of lake productivity by deep diurnal mixing. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 28(4). https://doi.org/10.1080/03680770.2001.11901941
  23. Galárraga, E., Zevallos, O., Toledo, P., Criollo, C., Robelly, N., & Ruales, J. (1992). Estudio para la recuperación y protección de la zona turística de los lagos de la provincia de Imbabura con fines de equilibrio ecológico y promoción turística. Ministerio de Relaciones Exteriores del Ecuador.
  24. Gunkel, G. (2003). Limnología de un lago tropical de alta montaña, en Ecuador: Características de los sedimentos y tasa de sedimentación. Revista de Biología Tropical, 51(2), 381-390. https://www.scielo.sa.cr/scielo.php?pid=S0034-77442003000200010&script=sci_arttext
  25. Bicudo, C. E. D. M., & Menezes, M. (2017). Gêneros de algas de águas continentais: Chave para identificação e descrições. Livraria RiMa Editora.
  26. Gómez, N., Rondón, J. C. D., Giorgi, A., Padró, H. G., Mateo, P., & Cortés, S. S. (2009). La biota de los ríos: Los microorganismos autótrofos. En Conceptos y técnicas en ecología fluvial (pp. 219-242). Fundación BBVA.
  27. Komárek, J. (2005). The modern classification of cyanoprokaryotes (cyanobacteria). Oceanological and Hydrobiological Studies, 34(3).
  28. Sant’Anna, C., Azevedo, M. T., Agujaro, L., Carvalho, M. C., & Souza, R. C. (Eds.). (2005). Manual ilustrado para identificación y conteo de cianobacterias planctónicas de aguas continentales brasileiras. Interciencia.
  29. Coesel, P. F. M., & Meesters, J. K. (2007). Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands. KNNV Publishing: Zeist.
  30. Komárek, J., & Zapomělová, E. (2007). Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. part: Coiled types. Fottea, 7(1), 1-31. http://www.fottea.czechphycology.cz/pdfs/fot/2007/01/01.pdf
  31. Bonilla, S. (Ed.). (2009). Cianobacterias planctónicas del Uruguay: Manual para la identificación y medidas de gestión. Programa Hidrológico Internacional.
  32. Rai, S. K., & Misra, P. K. (2012). Taxonomy and diversity of genus Pediastrum Meyen (Chlorophyceae, Algae) in east Nepal. Our Nature, 10(1), 167-175. https://doi.org/10.3126/on.v10i1.7779
  33. Rosini, E. F., Sant’Anna, C. L., & Tucci, A. (2013). Cyanobacteria de pesqueiros da região metropolitana de São Paulo, Brasil. Rodriguésia, 64(2), 399–417. https://doi.org/10.1590/S2175-78602013000200015
  34. Kim, H. S. (2013). New records of fresh-water green algae (Chlorophytes) from Korea. Journal of Ecology and Environment, 36(4), 303–314.
  35. Kim, Y. J. (2013). Taxonomic and ecological study of the families Hydrodictyaceae and Coelastraceae, order Chlorococcales, and Class Chlorophyceae in Korea. Journal of Ecology and Environment, 36(4), 421–437. https://doi.org/10.5141/ecoenv.2013.421
  36. Kim, Y. J. (2015). New records of genus Scenedesmus (Chlorophyceae) found in Korea. Journal of Ecology and Environment, 38(2), 213–227. https://doi.org/10.5141/ecoenv.2015.022
  37. Guiry, M. D., & Guiry, G. M. (2025). AlgaeBase. World-wide electronic publication. University of Galway. https://www.algaebase.org
  38. Sistema de Información Pública Agropecuaria. (s.f.). Boletín Nacional Precipitación y Temperatura 2023. Ministerio de Agricultura y Ganadería. https://sipa.agricultura.gob.ec/
  39. Pantle, R., & Buck, H. (1955). Die biologisch Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas-u. Wasserfach, 96, 1–64.
  40. Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. Journal of Phycology, 5(1), 78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x
  41. Van Colen, W. P., Mosquera, M., Vanderstukken, K., Goiris, M. C., Carrasco, E., Decaestecker, M., Leon-Tamariz-Alonso, F., & Muylaert, K. (2017). Limnology and trophic status of glacial lakes in the tropical Andes (Cajas National Park, Ecuador). Freshwater Biology, 62(3), 458–473. https://doi.org/10.1111/fwb.12878
  42. Van Colen, W., Mosquera, P. V., Hampel, H., & Muylaert, K. (2018). Link between cattle and the trophic status of tropical high mountain lakes in páramo grasslands in Ecuador. Lakes & Reservoirs: Research & Management, 23(4), 303–311. https://doi.org/10.1111/lre.12237
  43. Maridueña, A., Chalén, N., Coello, D., Cajas, J., Solis, P., Aguilar, F., & Elías, E. (2011). Mortandad de peces en la Laguna de Yahuarcocha, cantón Ibarra, provincia de Imbabura. Boletín Especial, 2(1).
  44. Cabezas, M. D. L. G., Steinitz-Kannan, M., & Vilarrúbia, T. V. (2023). Floración de Planktothrix agardhii en Yahuarcocha, una laguna altoandina hipereutrófica. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 44(1), 1–14. https://doi.org/10.26807/remcb.v44i1.958
  45. Barta, B., Mouillet, C., Espinosa, R., Andino, P., Jacobsen, D., & Christoffersen, K. (2017). Glacial-fed and páramo lake ecosystems in the tropical high Andes. Hydrobiologia, 813, 19–32. https://doi.org/10.1007/s10750-017-3428-4
  46. Sierra, Y. V. H., Ramos, A. P., & Riaño, N. A. (2021). Estructura del fitoplancton de lagos andinos ubicados en diferente rango altitudinal. Intropica: Revista del Instituto de Investigaciones Tropicales, 16(2), 153–167. https://dialnet.unirioja.es/servlet/articulo?codigo=8464162
  47. Wang, Z., Zhang, Y., Huang, S., Peng, C., Hao, Z., & Li, D. (2019). Nitrogen limitation significantly reduces the competitive advantage of toxic Microcystis at high light conditions. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124508
  48. Fujimoto, N., Sudo, R., Sugiura, N., & Inamori, Y. (1997). Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperature. Limnology and Oceanography, 42(2), 250–256. https://doi.org/10.4319/lo.1997.42.2.0250
  49. Okechukwu, I. O., & Ugwumba, A. O. (2009). Cyanobacteria abundance and its relationship to water quality in the Mid-Cross River floodplain, Nigeria. Revista de Biología Tropical, 57(1-2), 33–43. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442009000100004
  50. Wang, Q., Xiao, G., Chen, G., Du, H., Wang, L., Guo, D., & Hu, T. (2018). Toxic effect of microcystin-LR on blood vessel development. Toxicological & Environmental Chemistry, 100(8–10), 373–752. https://doi.org/10.1080/02772248.2019.1578963
  51. Welten, R. D., Meneely, J. P., & Elliott, C. T. (2020). A comparative review of the effect of microcystin-LR on the proteome. Exposure and Health, 12, 111–129. https://doi.org/10.1007/s12403-019-00303-1
  52. Lepillanca, F., de la Escalera, G. M., Bordet, F., O’Farrell, I., & Piccini, C. (2018). Detección de poblaciones tóxicas de Microcystis spp. con distintas preferencias ambientales. Estudio de caso: embalse de Salto Grande. Innotec, 16. https://doi.org/10.26461/16.06
  53. Mpawenayo, B., Cocquyt, C., & Nindorera, A. (2005). Diatoms (Bacillariophyta) and other algae from the hot springs of Burundi (Central Africa) in relation with the physical and chemical characteristics of the water. Belgian Journal of Botany, 138(2), 152–164. http://hdl.handle.net/1854/LU-334647
  54. Pham, T. L., Dao, T. S., Tran, N. D., Nimptsch, J., Wiegand, C., & Motoo, U. (2017). Influence of environmental factors on cyanobacterial biomass and microcystin concentration in the Dau Tieng Reservoir, a tropical eutrophic water body in Vietnam. Annales de Limnologie – International Journal of Limnology, 53. https://doi.org/10.1051/limn/2016038
  55. Godoy, R. F. B., Trevisan, E., Battistelli, A. A., Crisigiovanni, E. L., do Nascimento, E. A., & da Fonseca Machado, A. L. (2023). Does water temperature influence in microcystin production? A case study of Billings Reservoir, São Paulo, Brazil. Journal of Contaminant Hydrology, 255. https://doi.org/10.1016/j.jconhyd.2023.104164
  56. Gunkel, G., & Beulker, C. (2009). Limnology of the Crater Lake Cuicocha, Ecuador.
  57. Escobar Arrieta, S., Albuja, A., & Andueza Leal, F. D. (2021). Calidad fisicoquímica del agua de la laguna Colta. Chimborazo, Ecuador. FIGEMPA: Investigación y Desarrollo, 11(1), 76–81. https://doi.org/10.29166/revfig.v11i1.3135
  58. Guevara, E. A., Santander, T., Espinosa, R., & Graham, C. H. (2021). Aquatic bird communities in Andean lakes of Ecuador are increasingly dissimilar over time. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107044
  59. Ballesteros, I., Cruz, S. D. L., Rojas, M., Salazar, G., Martínez-Fresneda, M., & Castillejo, P. (2022). Screening of cyanotoxin producing genes in Ecuadorian freshwater systems. Acta Limnologica Brasiliensia, 34. https://doi.org/10.1590/S2179-975X2122
  60. Moss, B., Jeppesen, E., Søndergaard, M., Lauridsen, T. L., & Liu, Z. W. (2013). Nitrogen, macrophytes, shallow lakes and nutrient limitation: Resolution of a current controversy? Hydrobiologia, 710(1), 3–21. https://doi.org/10.1007/s10750-012-1033-0
  61. Sutton, M. A., Bleeker, A., Howard, C. M., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H. J. M., Abrol, Y. P., Adhya, T. K., Billen, G., Davidson, E. A., Datta, A., Diaz, R., Erisman, J. W., Liu, X. J., Oenema, O., Palm, C., Raghuram, N., Reis, S., ... & Zhang, Y. (2013). Our nutrient world. The challenge to produce more food & energy with less pollution. Centre for Ecology & Hydrology (CEH). https://nora.nerc.ac.uk/id/eprint/500700/1/N500700BK.pdf
  62. Manosalvas, D. (2017). Evaluación de los impactos ambientales generados por las actividades turísticas y agrícolas localizadas en las riberas del lago San Pablo [Tesis de grado, Universidad Tecnológica Equinoccial]. https://repositorio.ute.edu.ec/entities/publication/8387dbf0-84a7-4b08-9316-b64d1ccc8f6f
  63. Glibert, P. M. (2017). Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes. Marine Pollution Bulletin, 124(2), 591–606. https://doi.org/10.1016/j.marpolbul.2017.04.027
  64. Bachmann, R. W., Jones, B. L., Fox, D. D., Hoyer, M., Bull, L. A., & Canfield, D. E. (1996). Relations between trophic state indicators and fish in Florida (USA) lakes. Canadian Journal of Fisheries and Aquatic Sciences, 53(4), 842–855. https://doi.org/10.1139/f95-236

Downloads

Download data is not yet available.