Vol. 5 (2024): Esferas
SDG 3 Good Health and Well-Being

Importance of health surveillance from a One-Health perspective: linkages and research in Galapagos, Ecuador 2021-2022

Renato Leon
Universidad San Francisco de Quito USFQ
Rafael Polit
Universidad San Francisco de Quito USFQ
Carla Culda
University of Agricultural Sciences and Veterinary Medicine USAMV
Diego Páez-Rosas
Universidad San Francisco de Quito USFQ
Rommel Lenin Vinueza
Universidad San Francisco de Quito USFQ
Daniela Figueroa
Universidad Santo Tomás
Andrei Mihalca
University of Agricultural Sciences and Veterinary Medicine USAMV

Published 2024-04-01

Keywords

  • Ecuador,
  • dengue fever,
  • Aedes aegypti,
  • Dirofilaria immitis

How to Cite

Leon, R., Polit, R., Culda, C., Páez-Rosas, D., Lenin Vinueza, R., Figueroa, D., & Mihalca, A. (2024). Importance of health surveillance from a One-Health perspective: linkages and research in Galapagos, Ecuador 2021-2022. Esferas, 5. https://doi.org/10.18272/esferas.v5i.3133

Abstract

The Galapagos Islands represent a complex and unique set of ecosystems in which wildlife, local communities and urban fauna coexist on a daily basis. But these interactions, along with the presence of invasive species and infectious diseases, can lead to risks to both human and animal health. This monographic review addresses the risk and presence of some of the most relevant pathogens and vectors present at the Galapagos from a "one health" perspective, which integrates human, animal and environmental health.  It covered "zoonotic" diseases that are transmitted from animals to humans, the main pathogens that could threaten the urban fauna and the emblematic wildlife species, such as the Galapagos sea lion, and the main infectious agents that threaten the health of the human population, describing the main mosquito vector species in the islands and the viral diseases they can transmit. Finally, we described the activities conducted in 2021-2022 that involved the local community in the form of seminars and focus groups that aimed at informing the public about these diseases and their prevention, as well as field research based on sampling domestic dogs and setting mosquito traps to monitor the health and susceptibility of urban and local fauna to parasitic diseases. The results obtained can serve to the local government authorities for a better decision making and to implement the most adequate measures for the prevention and control of these infectious diseases

Downloads

Download data is not yet available.

References

  1. Adams, D.J., Rosenberg, D.E. y Yirui, H. (2016). Prevalence of vector-borne diseases in a sample of client-owned dogs on Santa Cruz in the Galápagos Islands: A pilot study. Vet. Parasitol. Reg. Stud. Reports 6, 28–30, https://doi.org/https://doi.org/10.1016/j.vprsr
  2. Adler, B. y Moctezuma, A.D. (2010). Leptospira and leptospirosis. Vet. Microbiol. 140, 287–296, https://doi.org/10.1016/j.vetmic.2009.03.01
  3. Azhar, M., Lubis, A. S., Siregar, E. S., Alders, R. G., Brum, E., McGrane, J., Morgan, I. y Roeder, P. (2010). Participatory Disease Surveillance and Response in Indonesia: Strengthening Veterinary Services and Empowering Communities to Prevent and Control Highly Pathogenic Avian Influenza. Avian Diseases, 54(s1), 749-753, https://doi.org/10.1637/8713-031809-Reg.1
  4. Badii, MH., Landeros, J., Cerna, E. y Abreu, JL. (2007). Ecología e historia del dengue en las Américas. [Ecology and history of dengue in the Americas]. Daena Int J Good Consci 2(2):309–333
  5. Barragan, V., Nieto, N., Keim, P. y Pearson, T. (2017). Meta-analysis to estimate the load of Leptospira excreted in urine: beyond rats as important sources of transmission in low-income rural communities. BMC Res. Notes 10, 71. https://doi.org/10.1186/s13104-017-2384-4
  6. Bataille, A., Cunningham, AA., Cedeño, V., Patiño, L., Constantinou, A., Kramer, LD. y Goodman, SJ. (2009). Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci U S A 106(25):10230–10235
  7. Bataille A., Cunningham, AA., Cruz, M., Cedeno, V. y Goodman, SJ. (2010). Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands. Mol Ecol 19(20):4491–4504
  8. Bhatt, S., Gething, P., Brady, O., Messina, J., Farlow, A. y Moyes, C. (2013). The global distribution and burden of dengue. Nature 496(7446):504–507
  9. Brito, J., Camacho, M. A., Romero, V. y Vallejo, A. F. (2022). Mamíferos del Ecuador. Version 2018.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador. https://bioweb.bio/faunaweb/mammaliaweb/FichaEspecie/Zalophus%20wollebaeki
  10. Campoverde, G. y Carolina, N. (2011). Línea base del estado de salud y detección de Leptospira patógena por PCR en lobos marinos de Galápagos (Zalophus wollebaeki) de la Isla San Cristóbal. http://repositorio.usfq.edu.ec/handle/23000/1500
  11. Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J. y Landry, B. (2006). Alien Insects: Threats and Implications for Conservation of Galápagos Islands. Annals of the Entomological Society of America, 99(1), 121-143. https://bit.ly/3Vtcdyg
  12. Cazaux, N., Meder, A. R., Calvo, C., Bertoldi, G., Miguel, M. C. y Hartfiel, L. (2019). Dirofilariasis canina: Una parasitosis emergente favorecida por el cambio climático. / Canine dirofilariasis, an emerging parasitism favoured by climate changes. Ciencia Veterinaria, 21(1), 69-80. https://doi.org/10.19137/cienvet-201921105
  13. CDC, C. for D. C. and P. (2019, abril 16). Dirofliariasis—Biology—Life Cycle of D. immitis. https://www.cdc.gov/parasites/dirofilariasis/biology_d_immitis.html
  14. Da Rosa, JFT., de Souza, WM., de Paula Pinheiro, F., Figueiredo, ML., Cardoso, JF., Acrani, GO. y Nunes, MRT (2017) Oropouche virus: clinical, epidemiological, and molecular aspects of a neglected Orthobunyavirus. Am J Trop Med Hyg 96(5):1019–1030
  15. Darwin, C. (2011). The origin of species. William Collins.
  16. Denkinger, J., Guevara, N., Ayala, S., Hirschfeld, M., Chavez, C., Martinez, J., Trueba, G., Montero-Serra, I., Fietz, K., Barragán, V., Murillo, J.C., Goldstein, T., Ackermann, M., Cabrera, F. y Dubovi, E.J. (2017). PUP MORTALITY AND EVIDENCE FOR PATHOGEN EXPOSURE IN GALAPAGOS SEA LIONS (ZALOPHUS WOLLEBAEKI) ON SAN CRISTOBAL ISLAND, GALAPAGOS, ECUADOR. J. Wildl. Dis. 53, 491–498. https://doi.org/10.7589/2016-05-092
  17. Diaz, N.M., Mendez, G.S., Grijalva, C.J., Walden, H.S., Cruz, M., Aragon, E. y Hernandez, J.A. (2016). Dog overpopulation and burden of exposure to canine distemper virus and other pathogens on Santa Cruz Island, Galapagos. Prev. Vet. Med. 123, 128–137. https://doi.org/10.1016/j.prevetmed.2015.11.016
  18. Duignan, P.J., Van Bressem, M.F., Baker, J.D., Barbieri, M., Colegrove, K.M., De Guise, S., de Swart, R.L., Di Guardo, G., Dobson, A., Duprex, W.P., Early, G., Fauquier, D., Goldstein, T., Goodman, S.J., Grenfell, B., Groch, K.R., Gulland, F., Hall, A., Jensen, B.A., Lamy, K., Matassa, K., Mazzariol, S., Morris, S.E., Nielsen, O., Rotstein, D., Rowles, T.K., Saliki, J.T., Siebert, U., Waltzek, T. y Wellehan, J.F.X. (2014). Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses-Basel 6, 5093–5134. https://doi.org/10.3390/v6125093 Farriols,
  19. Eastwood, G., Cunningham, AA., Kramer, LD. y Goodman, SJ. (2019). The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med Vet Entomol 33(1):44–55
  20. Eiras, A.E., Resende, M.C., Acebal, J.L. y Paixão K.S. (2019). New Cost-Benefit of Brazilian Technology for Vector Surveillance Using Trapping System. https://bit.ly/3rVodes
  21. Farriols, M., Arellano-Carbajal, F., Elorriaga-Verplancken, F.R., Adame-Fernández, K., Garrido, E., Álvarez- Martínez, R.C., Bárcenas, R.T., Flores-Morán, A.E. y Acevedo-Whitehouse, K. (2020). Filarial infections in California sea lions vary spatially within the Gulf of California, Mexico. Parasitol. Res. 119, 1281–1290. https://doi.org/10.1007/s00436-020-06638-y
  22. Fonseca, DM., Smith, JL., Wilkerson, RC. y Fleischer, RC. (2006). Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74(2):284–289
  23. Franco, A. (2011). Characterization of Salmonella Occurring at High Prevalence in a Population of the Land Iguana Conolophus subcristatus in Galápagos Islands, Ecuador | PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023147
  24. García, E. (1953). Progresos en la lucha contra la fiebre amarilla en el Ecuador [Progress in the struggle against yellow fever in Ecuador]. Boletín de la oficina sanitaria panamericana. https:// irispahoorg/handle/106652/14686.
  25. Gibbs, J. P., Snell, H. L. y Causton, C. E. (1999). Effective Monitoring for Adaptive Wildlife Management: Lessons from the Galápagos Islands. The Journal of Wildlife Management, 63(4), 1055-1065. https://doi.org/10.2307/3802825
  26. Gottdenker, N. L., Walsh, T., Vargas, H., Merkel, J., Jiménez, G. U., Miller, R. E., Dailey, M. y Parker, P. G. (2005). Assessing the risks of introduced chickens and their pathogens to native birds in the Galápagos Archipelago. Biological Conservation, 126(3), 429-439. https://doi.org/10.1016/j.biocon.2005.06.0
  27. Grijalva, C.J., Paez-Rosas, Diego, Crawford, C., Stacy, N., Nollens, H., Romagosa, C., Zeisloft, M., Cruz-Bedon, M., Llerena, Y. y Hernandez, J. (2018). Analysis of the Owned and Free-Roaming Dog Population in San Cristobal Island, Galapagos (2016-2017), in: Muñoz, J.P. (Ed.), 3er Simposio de Investigación y Conservación. Galapagos Science Center, San Cristobal, Galapagos, Ecuador
  28. Hamui-Sutton, A. y Varela-Ruiz, M. (2013). La técnica de grupos focales. Investigación en Educación Médica, 2(5), 55-60. https://doi.org/10.1016/S2007-5057(13)72683-8.
  29. Hiby, E., Atema, K.N., Brimley, R., Hammond-Seaman, A., Jones, M., Rowan, A., Fogelberg, E., Kennedy, M., Balaram, D., Nel, L., Cleaveland, S., Hampson, K., Townsend, S., Lembo, T., Rooney, N., Whay, H.R., Pritchard, J., Murray, J., van Dijk, L., Waran, N., Bacon, H., Knobel, D., Tasker, L., Baker, C. y Hiby, L. (2017). Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions. BMC Vet. Res. 13, 143. https://doi.org/10.1186/s12917-017- 1051-2
  30. Instituto Nacional de Estadística y Censos. Censo de Población y Vivienda-Galapagos. 2015. https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda-galapagos/
  31. Kilpatrick, AM., Daszak, P., Goodman, SJ., Rogg, H., Kramer, LD., Cedeño, V. y Cunningham, AA. (2006). Predicting pathogen introduction: West Nile virus spread to Galápagos. Conserv Biol 20(4):1224–1231
  32. Kraemer, MU., Sinka, ME., Duda, KA., Mylne, AQ., Shearer, FM., Barker, CM., Moore, CG., Carvalho, RG., Coelho, GE., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, IR., Teng, HJ., Brady, OJ., Messina, JP., Pigott, DM., Scott, TW., Smith, DL., Wint, GR., Golding, N. y Hay, SI. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife 4:e08347
  33. Leon, R., Carrazco Montalvo, A. R., Llerena Martillo, I. A., & Hinojosa Gavilanes, A. . (2021). La trampa entomológica Gravid-Aedes Trap, como una alternativa para el monitoreo del mosquito Aedes aegypti, vector del dengue, en las islas Galápagos. Esferas, 2(1), 54–73. https://doi.org/10.18272/esferas.v2i.1988
  34. Lima-Camara, TN. (2010). Activity patterns of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) under natural and artificial conditions. Oecologia Australis 14(03):737–744
  35. Ministerio del Ambiente, Agua y Transición Ecológica. (2021). La crisis sanitaria provocó un descenso del 73% en el ingreso de turistas a Galápagos. Noticias. Recuperado el 01/09/2022 de: https://bit.ly/3EFX3j7
  36. MSP (Ministerio de Salud Pública). Dirección Nacional de Vigilancia Epidemiológica; Ministerio de Salud (2020b) Gaceta-Vectores SE 30/2020. https://www.salud.gob.ec/gacetas-vectoriales-2020/
  37. MSP (Ministerio de Salud Pública). Dirección Nacional de Vigilancia Epidemiológica; Ministerio de Salud (2017) Gaceta 52-2017. Enfermedades vectoriales [Vector-borne diseases]. http:// www.salud.gob.ec/wp-content/ uploads/2017/07/Gaceta-Vectorial-SE52. Pdf
  38. Ortiz, DI. y Weaver, SC. (2004). Susceptibility of Ochlerotatus taeniorhynchus (Diptera: Culicidae) to infection with epizootic (subtype IC) and enzootic (subtype ID) Venezuelan equine encephalitis viruses: evidence for epizootic strain adaptation. J Med Entomol 41(5):987–993
  39. Páez-Rosas, D. y Guevara, N. (2017). Management strategies and conservation status in populations of Galapagos sea lion (Zalophus wollebaeki). In: Tropical Pinnipeds, Bio-Ecology, Threats and Conservation. CRC Press/ Taylor & Francis Group.
  40. Pan American Health Organization (PAHO). (2018). Zika Cumulative Cases. https://bit.ly/3ThZv3m
  41. Pettan-Brewer, C., Figueroa, D. P., Cediel-Becerra, N., Kahn, L. H., Martins, A. F., &
  42. Biondo, A. W. (2022). Editorial: Challenges and successes of One Health in the
  43. context of planetary health in Latin America and the Caribbean. Frontiers in public
  44. health, 10, 1081067. https://doi.org/10.3389/fpubh.2022.1081067
  45. Powers, AM. (2018). Vaccine and therapeutic options to control chikungunya virus. Clin Microbiol Rev 31(1):1–29. https://doi.org/10.1128/CMR.00104-16
  46. Ramos-Castaneda, J., Barreto dos Santos, F., Martinez-Vega, R., Galvão de Araujo, JM., Joint, G. y Sarti, E. (2017). Dengue in Latin America: systematic review of molecular epidemiological trends. PLoS Negl Trop Dis 11(1):e0005224
  47. Reisen, WK., Fang, Y. y Martinez, VM. (2005). Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42(3):367–375
  48. Romero-Vivas, CME., Arango-Padilla, P. y Falconar, AKI. (2006). Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann Trop Med Parasitol 100(sup 1):87–95
  49. Ryan, SJ., Lippi, CA., Nightingale, R., Hamerlinck, G., Borbor-Cordova, MJ., Cruz, BM., Ortega, F., Leon, R., Waggoner, E. y Stewart-Ibarra, AM. (2019). Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int J Environ Res Public Health 16(5):682
  50. Segura del Pozo, J. (2006). Epidemiología de campo y epidemiología social. Gaceta Sanitaria, 20(2), 153-158.
  51. Simón, F., González-Miguel, J., Diosdado, A., Gómez, P., Morchón García, R., y Kartashev, V. (2017). The Complexity of Zoonotic Filariasis Episystem and Its Consequences: A Multidisciplinary View. BioMed Research International, 2017, 1-10. https://doi.org/10.1155/2017/6436130
  52. Trillmich, F. (2015). Zalophus wollebaeki. IUCN Red List Threat. Species. Zajac, A.M., Conboy, G.A., 2012. Veterinary Clinical Parasitology, in: Fecal Examination for the Diagnosis of Parasitism. Wiley Blackwell, Ames IO, pp. 6–7.
  53. Whiteman, NK., Simon, J., Sinclair, BJ., Walsh, TIM., Cunningham, AA., Kramer, LD. y Parker, PG. (2005). Establishment of the avian disease vector Culex quinquefasciatus on the Galápagos Islands, Ecuador. Ibis 147:844–847
  54. Yactayo, S., Staples, JE., Millot, V., Cibrelus, L. y Ramon-Pardo, P. (2016). Epidemiology of chikungunya in the Americas. J Infect Dis 214(suppl_5):S441–S445