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Abstract

In this paper, the assumptions implicit in Leveque’s approximation are re-examined, and
the variation of the temperature and the thickness of the boundary layer were illustrated
using the developed solution. By defining a similarity variable, the governing equations
are reduced to a dimensionless equation with an analytic solution in the entrance region.
This report gives justification for the similarity variable via scaling analysis, details the
process of converting to a similarity form, and presents a similarity solution. The analytical
solutions are then checked against numerical solution programming by FORTRAN code
obtained via using Runge-Kutta fourth order (RK4) method. Finally, others important
thermal results obtained from this analysis, such as; approximate Nusselt number in the
thermal entrance region was discussed in detail.

Keywords: Lévéque approximation, Thermal entrance region, Thermal boundary layer,
Dimensionless variables, Temperature, Nusselt number, Runge-Kutta method
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INTRODUCTION

The experimental studies carried out by the researchers are generally in the field of
convective thermal transfers which several authors have addressed in their work, heat
transfer problems in a flow of fully developed laminar fluid through circular conduits.
An analysis of the heat transfers through a fluid flow and over the boundary layer was
established by Hamad and Ferdows [1]. Another study was carried out by Wei and Al-
Ashhab [2] on boundary layers of a non-Newtonian fluid subject to new boundary
conditions. A study was conducted by Trimbijas et al. [3] to analyze a boundary layer in
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mixed convection while employing a similarity technique to which partial differential
equations are reduced to ordinary differential equations. Ahmed [4] analyzed a boundary
layer in natural convection in the presence of transient wall temperatures using the finite
difference method. Shen and Lu [5] have modeled the problem of free turbulence using
the Runge-Kutta method for the prediction of the three-dimensional boundary layer.
Mahanthesh et al. [6] carried out a heat flow analysis on the basis of a mathematical
model managed by the boundary layer hypotheses while using the similarity method
to reduce the governing equations. Eldesoky et al. [7] studied the peristaltic pumping of
a compressible fluid in a tube using a perturbation analysis. Baehr and Stephan [8] and
Stephan [9] conducted research on heat transfer in the input region with well-specified
geometries. Additional work has been done by Asako et al. [10]. Shah and London
[11], Kakac et al. [12], Ebadian and Dong [13], and Kakac and Yener [14] on triangular,
rectangular and circular geometries. In the literature, we can find other thermal
problems performed on other forms of tube geometries such as; the circular channels,
the circular and the parallel plate and a rectangular channel. Thanks to these geometries,
the thermal problems have been solved easily using analytical methods, of which whose
prediction of the thermal transfer of the cylindrical walls was approached on several
models. Hausen [15] developed a model to study the Graetz problem inside a circular
tube. Churchill and Ozoe [16,17] proposed simple models to develop flux in a circular
duct. With the fully developed asymptote, and for the thermal input region. The Leveque
solution was combined by Churchill and Ozoe [16, 17]. For the Graetz problem, and in
order to predict the thermal characteristics in an arbitrary form of the tube, models have
been developed by Yilmaz and Cihan [18,19]. These two authors developed models for
uniform wall flow conditions (H) and a uniform wall temperature (T) in order to predict
the fully developed number of Nusselt. These models were fitted to these models with
the Leveque generalized solution so that the input offers an approved model along the
length of the tube. In the entrance area of the circular duct, two distinct problems must
be considered. One assumes the existence of a fully developed hydrodynamic boundary
layer while the other problem is more popular with developing thermal boundary layers.
In the case of Graetz's classical problem, the velocity distribution is fully developed and
the temperature of the fluid tends to propagate fairly rapidly inside the tube. In the
input region, the use of the Leveque approach gives us better convergent results in the
approximate solution on which we can assume that the velocity gradient is quite linear
and the boundary layer is considered thin. Belhocine and Wan Omar [20], Belhocine [21]
conducted an analysis to predict the distribution of the dimensionless temperature in a
fully developed laminar flow in a cylindrical pipe. Recently, Belhocine and Wan Omar [22]
were able to develop the analytical solution of the problem of convective heat transfer
within a pipe whose solution obtained is in the forms of the hypergeometric series.

The main objective of this work is to develop an exact solution of the thermal boundary
layer at the inlet of a circular pipe for a fully developed flow of laminar fluid commonly
called the Leveque approximation. The calculation methodology that we have followed
is based on the method of solution in similarity of the variables in order to predict
the dimensionless temperature as well as the thickness of the thermal boundary
layer near the entrance of the flow. Several steps have been discussed here on the
governing equation of the temperature field to reach the solution such that; the non-
dimensionalization and the use similarity variables, the transform the PDE to a set of
PDE's. Summarization of the boundary conditions and the integration of the equation.
We then compare the exact approximate solution of the leveque problem, with the
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numerical results using a Runge-Kutta fourth order (RK4) algorithm implemented by the
FORTRAN code. The profiles of the solutions are provided from which we infer that the
numerical and exact solutions agreed very well. Another result that we obtained from
this study is the number of Nusselt in the thermal entrance region to which a parametric
study was carried out and discussed well for the impact of the scientific contribution.

The governing heat diffusion equation
The total thermal energy balance, which is based on the use of equations of continuity

and momentum, is simplified by the expression obtained by Bird, Stewart, and Lightfoot
[23] s as follows;
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The Graetz-Poiseuille flow problem

The Graetz problem consists of determining the temperature in a steady state of a
fluid passing through a circular pipe whose flow is laminar fully developed. Thus, it is
a transfer of heat by convection of a fluid approaching the inlet section of a cylindrical
tube with a constant temperature T, whose wall is subjected to a constant temperature
T . The geometry of the problem is shown in Fig.1.

K
Fluid at (@)
> >

r
Ty

TR,z )=T,
Fig. 1. lllustration of Graetz problem

The contour of the velocity of the flow becomes a stable contour after a certain distance
from the hydrodynamic inlet and it remains practically fully parabolic and invariable
along the circular tube. Our context for solving the thermal problem is to find the
behavior of the temperature field as it evolves to be uniform at the temperature of the
downstream wall. The distribution of the velocity of the flow is not subordinated by the
variation of the temperature as long as the nature of the fluid is incompressible.

The fluid flow is completely laminar in steady state and fully developed
- The flow is considered incompressible Newtonian whose properties p, y, Cp, k. are
constant and do not depend on temperature.
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The temperature does not depend on the angular coordinate 6 (6—T =0),
Negligible viscous dissipation 00

The expression of the velocity of a fully developed flow is given by the following form:
u, =v,|1- r 2 @)
z Y0 R

Where V, is the maximum speed (center of the tube), # . =0, and U, =0.
The energy equation is subject to the assumptions mentioned above, Eq.(1) can be

written as follows:
r?\or 1o( or) T
A Y el P P 3
vo[ RZJ 0z a|:r 6r[r ﬁrj 6zz:| ®

where @=k/pC, is called the thermal diffusivity which has dimensions (m?/s), our
problem is subjected to the following boundary conditions ; at the inlet of the tube
T(r,0)=T, ;atthe wall of the tube T(R,z)=T, and at the centerline T(0,z) is finite or

oT
—(0,2)=0 -
ar( 2
Consider the following dimensionless terms:
_T-T,

2

0

Z=—"_
RPe

) R
where the Péclet Number Pe = %

By substituting the variables T, r, z for their expressions as a function of the dimensionless
variables 6, Y, Z in the heat equations, we obtain the following equations:

2
aoyn20_1o(,00) 1 2 @
oZ Y oY\ oY) Pe* oz’

_ _o. % - (%)
0(r,0)=1,00,2)=0,-2(0,2)=0

The influence of the axial diffusion is totally neglected when we apply the assumptions of
the boundary layer, which implies the resolution of the following dimensionless equation

060 1 0 (,00
1-Y)—=——|Y—
( )az YaY[ 6YJ ©

This equation can be solved by the technique of the separations of the variables at
which the temperature that we seek will be found in terms of hypergeometric series
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0(r,2)=3.C,e# G, (1) )

Where B, , and G,(¥), are respectively the eigenvalues and the eigenfunctions
associated with the Sturm-Liouville problems. The coefficients C, can be obtained by
using the orthogonality property of the eigenfunctions defined as follows:

j G,(Y)Y(1-Y?)dY
C = 0

n

Jl'Gj(Y)Y(l—YZ)dY
The Lévéque Approximation

For all values of the axial position, the orthogonal function expansion solution obtained in
the resolution of the classical Graetz problem is quite convergent, but the convergence is
very slow as soon as one approaches the input tube. Indeed, for very long values of Z, the
factor e has become converged. Lévéque [24] examined the thermal input zone in a
cylindrical pipe while developing an approximate solution which is formally advantageous
when the orthogonal function tends towards convergence to gradually (Fig.2).

\ R
Fluid at v (2)
- AP AP O A R NP
"’ ‘r/ o1
TR,z )=T.

Fig. 2. Simplifying representation of the Lévéque approximation

According to Lévéque's assumption, we can take the thickness of the boundary layer
SR, which leads to the following simplifications:

. In the radial conduction term, we can neglect here the effects of curvature. Thus,
derivative li(,a_T] is approximated by li[Ra_T]_BZ_T
or’
- Weare interested in the thermal boundary layer of the velocity allocation of which
it can be developed in a Taylor series from the wall of the pipe according to a
measured position, if we keep the first non-zero term.

or Ror\ or =

ror

If we set x=R-r, the speed distribution will take the following form:

R-7)? 2
v’(r)zv"(l_( o8 ]:%(2%_%}”"% 0
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- Letusknow, the boundary conditions of the flow entering the pipe are those that lie
outside the boundary layer, we will exploit the boundary condition T(x —»w) —>T,
instead of that market at the center of the tube to arrive at the Graetz solution.

Governing Lévéque’s Equation

Starting from the reduced energy equation whose axial conduction has been neglected
yet, and considering the said hypotheses, for the temperature field, we obtain the
following governing equation

y XOT_ 0T
"R oz o’

(10

Using the string rule, in order to convert the second derivative of r into that of x, we get

2
00 _ 2%

0z ox? (an

Boundary Conditions

The temperature T(x, 2), is controlled by boundary conditions which are fixed like this.
T(x0)=T,
7(0,2)=T,
T(0,2) =T,

Non-Dimensionalization

Now, we will use dimensionless variables for the simplification of the equation. For this,
we introduce the temperature and the axial coordinate of the following forms

T-T, z (12)

The scaled governing equation placed on the wall by X=x/R and boundary conditions
are given as follows

120 _2% (13)
0z ox*
a(x,0)=1
0(0,2)=0
O(x0,Z)=1
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Analytical Methodology for Problem Solving:
Temperature Field and Thermal Boundary Layer

If a similarity solution exists for a given situation, a mathematical transformation of
coordinate systems can be performed to reflect this fact. A similarity technique converts
these partial differential equations to ordinary differential equations and therefore,
make the solution much more simple. These analytical solutions still require numerical
integrations. At the current problem, we are looking for a similarity solution for the
temperature field, we assume,@(X,2) = F(n7), where 1= X/8(Z) is the similarity variable
and &(2Z) is variable represents the scaled thermal boundary layer thickness, and is
unknown at this stage. Using the chain rule, we will perform the following necessary
transformations.

00 _ondF _(_XdS\dF __ndS dF (14)
0z oZ dn 8%dz)dn  SdZ dn
90 _OndF _1dr (15)
0X oXdn & dn
00 _ 0| 1 dF| 1 0|dF| 10nd|dF|_1dF (16)
0X® oX|8(Z)dn| séX|dn| SoXdn|dn| 8% dy’

Using the important results, the previous equation for 8 (X, Z), has been reduced to the
solution of the ordinary differential equation for F(r7)

2 17
4 oner 90)9E 07
dn dZ" dn

We put the term in parentheses Ch %) aconstantis equal to 3/2 because it is authentic
that the supposition of similarity will lose unless this magnitude is indispensable to be
independent of Z. Finally, we get at the solution of a system of equations composed of
two unknowns to be found F(z7) and 8(2).

d*F 3 2 dF

dn* g dn
5453 (19)

dz "~ 2

0

Starting from the boundary condition on 6(x,Zz), we can calculate the derivatives
the boundary conditions of these formulas. We notice that 6(0,Z) =0 which implies
6(,Z) =1 and F (0) =0 which tends to F(»)=1. The residual clause at the entrance of
the tube gives us:

0(X,0)= F[LJ (20)
5(0)
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By favoring 6(0)=0, this condition has been dismantled in the one obtained recently
F() =1, when the variable X tends towards the infinite, that is to say X — .. By joining
the two boundary conditions on F(r7)and 8(Z), we get to:

F(0)=0, F(x)=1and 6(0)=0

From the equation, we can write
d’F
d?]2 _ 1.2 (21)
ar =
dn

By integrating the two terms of the obtained equation
d’F
an’ _ (3 2)
aF " [3n*dn

dn

We arrive at the following expression

ln{j—lﬂ =-n’+k= ln[Ce’”3 ] @3)
Where k and C are constants of the integral
By analogy, the following is drawn
dF _ v (24)
dn
Finally, the solution of the equation will take the following expression:
n
F(q)=CJ.e_”3d77 25)
0

The function F(5) checks the initial condition for =0, F(0)=0, and also considers the
boundary condition for 7 =, F(®) =1; which implies

F(o)=1= cje'"’dq (26)
0
From where C= 1
I 27
J-e_,, dn (27)
0
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So
e"’sa’n

ct—=x

F(n)=

e"’sdﬂ

=38

The scaled boundary layer thickness §(z) is calculated by the integration, which gives
the following solution

5(2)282)’ (29)

Finally, the solution of our differential equation takes the following form

Fop=5——= )je"dy (30)

Where I'(x) is the Gamma function [25], a MATLAB code was used to approximate the
values of the integral and the function F(n) for each abscissa n.

Numerical resolution of the problem using RK04 method

The original ODE of our problem is defined as follows:

d2F+3 2 dF _

0
dn’ 7 dn

With =0, F(0)=0 and Z—F(O);éo
n

We will use the fourth-order Runge-Kutta method, so we have the following system:

Z_sz
7 (32)

ar _ -37°P
dn

With F(0)=0 and P(0)=1
If we have two ordinary differential equations of the first order, we have:

L rera
(33)

dz
dx _g(x’y’z)
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By applying the RKO4 method on this system, we give
{ Vin =y, +(ky +2k +2k, +k;)/ 6

zy=z,+,+2L,+21,+1,)/6

Where
ko =hf(xi’yi7zi)
h k l
k=hf(x.+—,y.+2,z+2
1 Sf(x, ) Yi 2 Z; 2)
h k I
ky=hf(x,+—=,y. +-L,z,+2
2 f(x 2}’, 22, 2)

ky=hf(x,+hy +k,,z,+1,)

and

ly=hg(x;,y;2;)

h k, l
L=hgx,+—=,y,+2,z,+2
L\ =hg(x, 2)’, 2 Z; 2)

k, L

h
L=hg(x,+=,y,+L,z,+
2 =hg+ 2,y + 2z

L=hg(x,+hy +k,,z,+1,)

34)

We have adopted the Kutta Runge algorithm for finding the solution of our system of

equations;

The interval for the integration of the equations is chosen to perform our

calculations: [a, b] if we takea=0,and b =3
The number of iterations N = 30,
The size of the iterations will be estimated as follows: h

The flowchart for the above process is shown in Figure 3.

= (b-a) /N=3/30=0.1
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Fig. 3. Flowchart of the RK-4 method for resolving the second ODE's systems.

Set initial values
forx,yand, z
input N, a, b

v

h=(b—a)/
N steps

Do 1 i=I,N

Have
we calculated for
the last internal ?

> . *
/ Print x,y ,z

l

Iteration steps : @
kD = hf(x;,ypzlJ first

lo=hg(xu¥.2) approximation
ky =hf(xi+§,y‘- +k?",zl- +i;"] second
I,=hg(x;+ % i+ k?". z+ i;") slop approximation °
ke = hf(xi+ijs +k2—‘12s +l;’) third
I, =hg(x;+ gd’i + % z; +i;‘) slop approximation
fourth

ks =hf(x;i+hy +kz +13)
Iy =hg(x;+ hy +kpz + 13 slop approximation

v

Yi+r =¥ + (ko + 2k + 2k, + k3) /6
Zigg =5+ (g + 2L + 215 + 13)/6
Calculate (y, , z)" for next iteration

_—_I Take next interval x;,, |

The main program was drafted by FORTRAN, which will solve the problem of Leveque
whose procedure initiated to solve simultaneously two differential equations of the
order by the method of Runge Kutta RKO4. This program relies on a definition of two
functions whose subroutine RK04 is called at each repetition of the loop that intervenes
in the calculations. The code edited in the machine that was executed is illustrated in
detail in Figure 4.
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Fig. 4. FORTRAN code of Runge Kutta for set of first order differential equations

Program Test Rkl
integer. ;- SIZE = 100
real=g X(SIZE) Y(SIZE) Z(SI1ZE)
real=8 xl . x0.h

integer k.kl.l

pause ' Adjust vindow size. '

=x0=0.d0 Istarting x

xl=3.d0 lending x

kl=30 'nunber of steps in =
h={xl-x0)/kl lintegration step
X(0)=x0

Y(0)=0.d0: Z(0)=0.89293687d0 !starting values
'xntegrot1on loop
do k=0,
call RK4(X(k) Y(k).Z(k).h. X(k+l) Y(k+1l).Z(k+1))
end do
lvrite header
print = °
print # ° X Y estinated Z estinated '
print . '
lwrite kl+l result lines
do k=0, kl
wrate(= 10) X(k). ¥(k). Z(k)
end do
print * °
print = °
stop
format(F9.4.F12 7.F15.7)
END

ly*=z
real#8 Function F(x.y.z)
real=8 x. v,z
Fez
return
End
|z ==3xxz
real#8 Function G(x.vy.z)
real=*8 x.yv.z
Ge=3d0nxmxnz
return
End

IIntegrate svten from x to x+h using Runge-Kutta
ubroutine RKd(x y z h x1 vl.zl)
al=8 % v,z h x
al#8 cl1,c2,.c3, 04 d1 d2 d3,d4 . h2.F.G
cl=F(x.y.z)
dl=G({x.y.z)
h2=h-2 .d0
c2=F(x+h2, y+h2#cl z+h2%dl)
d2=G(x+h2.y+h2wcl z+h2wdl)
c3=F({x+h2, y+h2»c2, z+h2#d2)
d3=G(x+h2, y+h2#c2, z+h2#d2)
c4=F(x+h. y+h*c3 z+h*d3)
dd=G(x+h.y+hec3, z+hed3)
x1l=x+h
yl=y+h*(cl42 . d0%c242 dO*c3+cd)-6.d0
zl=z+h*(d1l+2 dO»d2+2 dO%d3+d4)/6 .40
return
nd
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The analytical solution that we have developed above is compared here with the
numerical results derived from the FORTRAN V.05 calculation code. The results of the
two methods are condensed in detail in Table 1.

Table 1. Exact results and the numerical solution

Runge-Kutta (RK4)

Variable Exact analytical solution

method
F(n) F(n)

0 0 0.0000000
0,1 0,08927136 00892714
0.2 0,17823109 0.1782309
03 0,26608715 0.2660866
04 0,35156264 03515626
05 043300027 04329998
06 0,50853023 0.5085291
07 0,57631574 0.5763146
08 0,63483615 06348343
09 0,68314582 06831438

1 0,72105634 0.7210538
11 0,74916957 0.7491656
12 0,76875346 0.7687482
13 0,78149478 07814872
14 0,78918921 0.7891808
15 0,79347888 0.7934697
16 0,79567283 0.7956641
1,7 0,79669613 0.7966892
18 0,79712921 0.7971242
19 0,7972944 07972914

2 0,79735155 0.7973494
2,1 0,79736852 0.7973676
22 0,79737298 0.7973729
23 0,79737387 0.7973742
24 0,79737387 0.7973746
25 0,79737477 0.7973747
26 0,79737477 0.7973747
2,7 0,79737477 0.7973747
28 0,79737477 0.7973747
29 0,79737477 0.7973747

3 0,7973747 0.7973747

156
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Fig. 5 shows a comparison between the resolution results of the equation predicted
by the analytical method and the numerical data derived from the FORTRAN code, the
two sets of results of which are plotted in the same figure. On the basis of Fig. 5, it can
be seen that the two curves are fairly identical, while observing that the dimensionless
temperature 6 gradually and gradually increases to the abscissa Z = 0.7, then loops and
arches a little, by varying its path until it reaches the position Z = 1.7 where it stabilizes
at a constant value 0.79 along the tube until the outlet of the fluid stream. Fig. 5 shows
clearly that the results of the analysis solution are very excellent convergence with those
of the numerical results performed by the Visual FORTRAN v5.0 calculation code during
which the use of the RKO4 method obviously gives us a severely accurate assessment.

Fig. 5. Comparison of exact and fourth-order Runge Kutta (RK4) numerical solutions

1,0

0,9

0,8

07 e
0.6 /
05 /

/ —o— Exact Solution
0.4 —— Numerical Solution (RK4)
&

03 /

Dimensionless temperature q(C,Z)=(h)

02
o1 1/

0,0

0,0 05 1,0 15 20 25 30
Similarity variable h=C/ dZ)

Fig.6. shows the variation in the thickness of the thermal boundary layer as a function
of the longitudinal coordinate where the latter increases slowly from the zero position
towards the direction of flow of the fluid as it penetrates the pipe through its center and
arrogates its total space. At the inlet of the tube and its wall, the shear stress is greater
during which the thickness of the boundary layer is very short and slowly decreases to
the fully developed value. In fact, the collapse of the pressure is increased in the inlet
zone of the tube under the effect which may cause the phenomenon of friction over
the whole of the tube. This elevation can be negligible for long and important tubes in
short lengths. A thin layer can be observed on the wall at which the velocity of flow is
less than the wall. By going from front to back, the thickness of the thermal boundary
layer lengthens along the channel.
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Fig. 6. Thermal boundary layer thickness distribution by analytical method

g

N

-

=

5

|
m

p—
-
=

£
—

Thermal boundary layer thickness d (Z)
-
\
|
0
3
N

,0 0,5 1,0 | K 2,0 2,5 3,0
Dimensionless axial coordinate Z

The heat transfer coefficient

Depending on the axial position, we try to understand the heat fluxes of the wall when a
fluid flow is involved, we can calculate it directly using the following formula:

0. =k L (R 2) (35)
or

By usual notation, the convective transfer coefficient h (z) is known from the following
expression

9,(2) = ()T, ~T,) 36)

where Ty, is the bulk or cup-mixing average temperature.

The average bulk temperature is mathematically defined as:

r IOR 2zrV (r)T (r,z)dr 37)
B L” 220V (F)dr

Where 7 (r)=v,(1-#*/R*) is the velocity field. The temperature gradient at the wall is
commonly subordinate to the heat exchange coefficient, we can estimate it as follows:

ka—T(R,z)
h(z) = _or (38)
(T, -1,)
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The Nusselt number is defined as a dimensionless heat exchange coefficient.

2R (39)
Nu@)=====2 6; @)

Where 8, is the without dimensional bulk temperature along pipe

We approximate the mean temperature T, by the temperature of the liquid entering the
pipe T, and this, in the region of entry where the boundary layer is thin.

As a result, and through the thermal input region, the heat exchange coefficient (h) is
expressed as

g, =k LR,z =h(T,-T,) “0)
or

We know the Nusselt number Nu = 2hR / k, and by introducing the dimensionless
variables, we obtain the following:
2 OF

Nu(Z)= 2—(, )_%6_() (41)

oF
By substituting 8(Z) and %(O), The final formula of the Nusselt number as a function
of the variables Pe, Z, and R which we evaluated in the input region can be expressed
as follows: R\
Nu(Z)~1.357 Pe”[;J 42)

By comparing with the exact solution, we can now appreciate that this calculation is a
better evaluation in the range

Pe [z)<Pe 43)
2500 \(R)™ 50

Fig.7 shows the variation obtained in the input region of the Nusselt number as a
function of the axial distance Z obtained in the thermal input region for various radius
of the pipe. We can observe that the number of Nusselt, Nu (2), rises as a function of
the increase of the radius of the tube and that this influence is very noticeable enlarged
at the entrance. When Z is greater than a certain distance, all the bundles of curves
have become intensified and they stabilize horizontally flat, this explains why the fully
developed boundary layer is reached. Indeed, the boundary layer triggers to increase
when the fluid enters the tube in the walls of the walls having a temperature distinct
from that of the fluid. The developed thermal condition is achieved after the flow passes
a certain position.
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Fig. 7. Nusselt number as a function of axial position for different tube radius

—

—a—R=1

Nusselt Number Nu

Dimensionless axial coordinate Z

Fig. 8 shows the Nusselt number as a function of the longitudinal coordinate for different
values of the Peclet number. Itis observed that the increase in the number of Peclet leads
to an increase in the number of Nusselt. As can be seen, the Péclet number has a much
more pronounced effect on the Nusselt values for positions near the tube entrance.
However the curve exhibits the same overall behavior - larger Nu at small Z and more
or less constant value of large Z. In the tube entry region, where the boundary layer has
expanded, we can see the reduction of the Nusselt number where it stabilizes in the fully
developed thermal zone to a constant value does not depend on the Reynolds number
and the heat flux. Hence, the thermal coefficient (h) appeared unlimited at the birth of
the thermal boundary layer, and then gradually decreases to a stable value when the
flow is fully developed at the origin. The numerical results clearly illustrate that the value
of the Nusselt number increases and then decreases sharply over the entire longitudinal
position of the tube.

Fig. 8. Nusselt number as a function of axial position with various Peclet numbers

1

Nusselt number Nu

Dimensionless axial coordinate Z
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In conclusion, this paper presented an analytical and numerical solution to the
Leveque approximation problem in order to predict the evolution of the thickness
of the boundary layer as well as the temperature of the fluid at thermal entrance
fully developed region through a circular tube with boundary condition at the axial
coordinate origin. The exact solution methodology was based on the similarity variable
and the generalized integral transform technique while the numerical approach is based
on the integration technique of two differential equations with the Runge Kutta method
of order 4 (RK4) programmed in Visual FORTRAN v5.0. The solution method was verified
to lead to converging values which are in accordance with physically expected results.
After demonstrating the convergence of the solution, the Nusselt number distribution
of different Péclet values was analyzed, and the results are also in accordance with
expected literature values. As final comments one should mention that the same
solution procedure can be used for any dynamically developed velocity profile, as it
occurs in many other occasions. Also, the methodology can be easily extended to other
configurations such as another channel geometries, different wall heating conditions,
and vicious and other flow heating effects.
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