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Abstract

This paper is devoted to the approximation of a nonstandard Darcy problem, which
modelizes the ow in porous media, by spectral methods: the pressure is assigned
on a part of the boundary. We propose two variational formulations, as well as three
spectral discretizations. The second discretization improves the approximation of the
divergence-free condition, but the error estimate on the pressure is not optimal, while
the third one leads to optimal error estimate with a divergence-free discrete solution,
which is important for some applications. Next, their numerical analysis is performed
in detail and we present some numerical experiments which conrm the interest of the
third discretization.
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Introduction
We consider the following Darcy problem:

u+Vp=f in Q, (1.1)
divu=0 in Q, (1.2)
u.n="U on I', (1.3)
p=¢ on T'Z, (1.4)

where © is the plane square | — 1,12 and n = (ny,n,) is the exterior unit normal to the
boundary I' = 9Q. The boundary I is divided into two parts: the horizontal portion I'! =
{(z,y)| =1 <z < 1,y = £1} and the vertical portion I'? = {(z,y)|z = £1,-1 <y < 1}.
As we can see, the boundary condition on I'? are nonstandard, since we prescribe the value
of the pressure on I'2. On the contrary, we have a classical condition on the portion I'!.
These conditions are described in the following figure.

Boundary condition
on the normal velocity

Fl
Boundary condition Q Boundary condition
on the pressure 2 2 on the pressure
Fl

Boundary condition
on the normal velocity

Figure 1.1

The equations of the Darcy problem not only modelize the flow in porous media, but
also appear in the projection techniques for the solution of Navier-Stokes equations (see
[10] and [15]). The nonstandard boundary conditions, where the pressure is assigned on
a part of the boundary, have a physical meaning: typically the portion I'* corresponds to
rigid walls, whereas the entry or exit of the fluids takes place through I'2. The spectral dis-
cretization with this type of boundary conditions was only studied within the framework of
the Stokes problem (see [6], [4] and [5]), while Azaiez, Bernardi and Grundmann proposed
in [2] the spectral discretization of the standard Darcy problem, where the normal velocity
is assigned on the boundary.

This paper is devoted to the spectral discretization of the nonstandard Darcy problem.
First, we give two variational formulations. Each one leads us to well-posed problems. Se-
cond, we study the regularity of the solution by using a mixed problem of Dirichlet-
Neumann for the Laplace operator. Next, from the first variational formulation, we derive a
first spectral discretization, which is simple, gu‘c7 in order to improve the approximation of
the divergence-free condition, we study a second spectral discretization, where the inf-sup
condition is obtained with more difficulty and where the error estimate on the pressure is
not optimal. Finally, the second variational formulation yields a third spectral discretiza-
tion, which leads us to optimal error estimate and a divergence-free discrete solution.
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An outline of this paper is as follows. The two continuous variational problems, as
well as the regularity of the solution, are studied in Section 2. Section 3 is devoted to
the analysis of three spectral approximations of this problem in the case of homogeneous
boundary conditions. In Section 4, we present the algorithms that are used to solve the
first and third discretizations, together with some numerical experiments.

Statement of the problem and notation

In order to set this problem into adequate spaces, recall the definition of the following
standard Sobolev spaces (cf. J. Necas [13]). For any multi-index k = (ki, ko) with k; > 0,
set |k| = k1 + k2 and denote

olFly

= ——
dxi Ok

Then for any integer m > 0 and any plane domain Q whose boundary is Lipschitz-
continuous(cf. Grisvard [12]), we define:

H™Q) = {v € L*(Q);0%v € L*(Q) for 1 < |k| <m},

equipped with the seminorm

ol = () /\OkUIde%,

[k|=m
and norm(for which it is an Hilbert space)
- ko2, \1/2
V]l ) = ( Z Z ”aanZ(sz)) 2,
lkj=0 &

For extensions of this definition to non-integral values of m (see [11,12]), let s a real
number such that s =m + ¢ with m € IN and 0 < o < 1. We denote by H*(2) the space
of all distributions u defined in Q such that u« € H™(Q2) and, V|a| = m,

// BQHI 77 “uly))* dzdy < +o0.

y”2+20

It can be shown that H*(Q2) is a Hilbert space for the scalar product

(u,0)50 = (0, V)ma + D / / CalC Puy)(O°v(z) - O7u(y)) dady. (2.1)

va -yl

lal=m

Let T be an open part of the boundary 9 of class C™ ! and TIF’ the mapping
v = vy defined on H™(2). We denote by H™2(I") (see [7,12]) the space TX'(H™({2))
which is equipped with the norm:

el -y (T) = it {[|v]| m(@), v € H™(Q) and v = ¢} (2.2)

In this text, we shall use the spaces H'/2(I") and H*?(I") corresponding to m = 1 and 2.
Let us define the space H&éQ(F’) = {ur, ve HY(Q), Vx € 0\ T, vjpa(x) = 0}. We

shall also be interested in the dual space of H&éz(F’ ),
HYAI) = (H3g(I))' (2:3)

We shall use the Hilbert space H(div;Q) = {v € L?(Q)? : div v € L*(Q)}, equipped
with the norm
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. 1
HVHH(div:Q) = ((”VHL2(Q))2 + (||div VHLﬂ(sz))Q)z- (2.4)

For vanishing boundary values, we define:

Hy(Q) = {ve H'(Q): voq =0}

For A =] — 1, 1[, we denote the norm in L%(A) by |jv|

1 1
0A = ([I(U(L))Z dzx)?, the semi-

1

norm in HY(A) by |vha = (/ (v’(x))zdx)% and the norm in HY(Q) by

’ -1
o1 |

lollia = (/_1((71(90))2 + (V'(2))?) do)=.

We note x = (z,y) the generic point of the square Q and we call T';, Typ, Ty
and I'jyy the edges of (), starting from west and turning counterclockwise. For each J,
J =111, 11,1V, the extremities of the edge I'; are ay_; and ay, with the convention
ag = ayvy, the exterior unit normal vector to I'; is denoted by ny and the counterclockwise
unit tangent vector is 73. Figure 1.2 below presents this notation.

For any domain A in IR or IR? and for any nonnegative integer n, IP,(A) stands for
the space of all polynomials on A with degree < n with respect to each variable. We also
use the notation IPY(A) for the subspace P,(A) N HY(A). For A =] — 1,1], the family
(Lyn)n of Legendre polynomials is a basis of the spaces IP(A) of polynomials on A (we refer
to [7, Chap. I] for the properties of the orthogonal polynomials). These polynomials are
orthogonal to each other in L2(A) and are caracterized as follows: for any integer n > 0,
the polynomial L, is of degree n and satisfies L,,(1) = 1. Let us recall some properties
that we need. The family (L,), is given by the recursion relation:

{ Lo=1, Li(¢) =¢, (2.5)
(n + 1)Ln+1(o = (2n + 1)<Ln(o - nLn—l(Ov n > 1. ’

Each polynomial is a solution of the differential equation

(=LY +nn+1)L, =0, n>0, (2.6)
and its norm is given by
2
L%, = > 0. 2.7
Iallfs =575 2 (27)
niv
ap = arv ant
v TIv
Ui
ng
T1
Q
Tin
nyrr
Iy
ar T11 L arn
nyr
Figure 1.2

Three consecutive polynomials are linked by the integral equation
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— — > 1. .
[ L€ de = 5= (Lua(Q) = Luea(Q)), m21 (28)
From (2.6) and integration by parts, we derive
n(n+1)
) =" s = ntn 1), (29)

vﬂpn S IPTL(A)7 |<P7L|1,A S \/g’szngn (210>

Next, let N > 2 be a fixed integer. We denote by &;, 0 < j < N, the zeros of the
polynomial (1 — ¢?)L/y(¢) in increasing order. We recall (see [7, Chap. I]) that there exist
positive weights p;, 0 < j < N, such that the following equality, called the Gauss-Lobatto
formula, holds

1 N
Ve € Poxa(A), [ (C)dC = Y 0()py. (2.11)
J- =
Moreover, it follows from the identity (see [7, Chap. III])
u 2 1 2
Z Ly(&)pi = 2+ p)ILa o, (2.12)

that the bilinear form: (u,v) — ¥ u(&;)v(£;)p; is a scalar product on Py (A), since we
have

N
Vo € Py(A), [lvllfa < Z v(&)?p; < B[V a- (213)

THE CONTINUOUS PROBLEM

First variational formulation

We define the subspace H'(Q;17)
introduce the space:

{v e HY(Q)jv = 0 on I"} of H(Q) and we

M = HY(Q;T?). (3.1)

In the same way as in [1], we consider the following equivalent variational formulation
of the problem (1.1)-(1.4):
Find u in L?(Q)? and p in H(Q2) such that p — ¢ belongs to M and that

Vv e L3Q?2  a(u,v) +b(v,p) = /Qf(x) v(x) dx, (3.2)
Vg e M, b(u, q) =< Uy, q >r1, (3.3)
where the bilinear forms a and b are defined by
V(v,w) € (LX(Q)2)?,  a(v,w) = /Q v(x). w(x) dx, (3.4)
Vv e LAQ)?2, Yge HY(Q),  b(v,q) = /Q v(x). Vg(x) dx. (3.5)

Theorem 3.1 Let f be in L*(Q)?, Uy in H-V4(T?) and ¢ in HY?(T'?), where H~Y/?(T'")
and HY?(T?) are defined respectively in (2.3) and (2.2). Then problem (3.2), (3.3) has a
unique solution satisfying

[lullzz @y + ol are) < CUIElL2@) + Vol —1j2r: + [l@llj2r2)- (3.6)

Proof. First, let us define @ belonging to H/*(T') such that @irz = ¢ and ||@l1/2r <
cllell1/ar2. To this end, we must extend ¢ to a function belonging to H/?("). Let u be a
function defined in [0, 2] by

pt)y=1—1t, for 0 <t <1land p(t) =0, for1 <t <2.



Bernard (2018)

We define ¢y, by
@lar + i) = p(t)p(ao + (2 = )71) + 12 = )e(ar + (2 = )7 11)
and @pr,,, by
@lao —trv) = p(t)p(ao +tr1) + (2 — t)plan + i)

Then we have ||@|l1/o,r < Cll¢ll1/2,r2. Next, let @ in () such that ®;p = ¢. Finally, we
obtain a function ¢ verifying

Ppr2 = ¢ and ||| i1@) < Cllellijare- (3.7)
Second, let us extend Uy to a function belonging to H~Y/?(T). We set U[)ll"l = Uy and
Ugre = —3 < Uy, 1 >p1 . Then, we have [|Ug||-1/ar < C||Upll=1/2,1 and < Up,1 >p= 0.
Next, we define Neumann’s Problem:
—Ap=0 inQ
O -
8—:6 =Uy onl

and we set ug = V1. Applying Proposition 1.2 of [11, page 14], we derive that ¥ belongs
to H'(€), which implies that ug belongs to H(div ;) with
o]l qaivsey = ¢l ) < CllToll-1/2r,
since divu, = Ay = 0. Finally, uy verifies
ug.np = Uy, divug =0 in Q and |[ug||gaivie) < Cl|Uol|—1/2,r1- (3.8)
Now, let us split p as: p = ® + p with p in M and u as: u = up + . Then, we can
write the problem (3.2),(3.3) as
v e L2(Q)?  a(@,v)+b(v,p) = /ﬂ(f(x) — VO(x) — up(x)) . v(x) dx. (3.9)

Yge M, b(iq) =0. (3.10)
Since the right-hand side of (3.9) defines a continuous form on L?*(2)? and since the prop-
erties of continuity and ellipticity are obvious we have only to check the following inf-sup
condition on the form b (see [11, pages 58,59]):

b(v, b
inf sup bv.a) > B <= Vqge M, sup bv.9) > Bllgllm e (3.11)

a€M yera(0) [|v]|L2()2 verz@p 1vllze )

with a positive constant S. This "inf-sup condition” was introduced independently by
Babuska [3] and Brezzi [9]. We can verify this condition by taking v = Vg . Indeed, we

have
bv,q) _ b(Vg,q)

su >
verz@p 122~ IVallzz)p2

= |Q|H‘(Q)

and, since gr> = 0, using a generalization of Poincaré inequality (see [11, Chap. I, page
40)) yields ||q||r2() < Plg|m1(q), which implies

llallzr @) < /(P)? + Dlgla o).

Thus, the ”inf-sup condition” is verified with the positive constant 5 =

applying Theorem 2.3 [7, pages 116,117], the theorem follows. &
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Second variational formulation

We introduce the space:
X ={veL*? divv e L*(Q) and v.nm = 0}. (3.12)

In an analogous way as in [1], we consider the following equivalent variational formu-
lation of the problem (1.1)-(1.4):

Find u in X and p in L*(Q2) such that u — ugy belongs to X, where u is the function
previously constructed that verifies (3.8), and that

YwveX, a(uv)+di(v,p = /ﬂf(x).v(x) dx— < p,v.n >re, (3.13)
Vg € L*(Q), b (u,q) =0, (3.14)
where the bilinear form b* is defined by
Vv e H(div;Q), Vg e L(Q),  b'(v.q) = — / divv(x).qx)dx.  (3.15)
Q

In the same way as previously, we split u as: u = up + . Then, we can write the
problem (3.13),(3.14) as

YweX, a(@v)+di(v,p) = /ﬂ(f(x) —u(x)).v(x)dx— < @, v.n > . (3.16)

Vg€ L3(Q),  b*(@,q) = 0. (3.17)

Since the right-hand side of (3.16) defines a continuous form on X and since the proper-
ties of continuity and ellipticity are obvious, we have only to check the following inf-sup
condition on the form b*:

b (v
Vg € L*(Q),  sup v > B*lall 2@ (3.18)
vex HVHH(dlv Q)

with a positive constant 8*. Let us note that ¢g = ¢ — |Q\ / x) dx belongs to L2(€2) and,

owing to a classic result (see [11, Chap. 1]), there exists vq in H{(Q2)?, such that
divvo=—q and |[volla @y < cllgollzz@-

Then, we set

V=vo+vi with wvi(z,y)= |Q\/ x) dx)z,0), —1 <z,y <1.

We can verify that v belongs to X with

divi=—q and  [V]maen < CI¥lmer <l

since | Jo q(x) dx| < /19| [|l¢]l 2(@- Then, we have

b'(v. q) b (v,9)
sup ! > Uil
VEX IVll@iviey ~ 19 llacivie) C’H 2

Hence, we derive the inf-sup condition and we obtain the following result.

Theorem 3.2 Let f be in L*(Q)?, Uy in H-Y*(I') and ¢ in HY*(T'?), where H~/2(T'")
and H'Y?(T?) are defined respectively in (2.3) and (2.2). Then problem (3.13), (3.14) has
a unique solution satisfying

lullm@iv.0) + 1Pl 220) < C1IEllz2@) + Vol —1j2.0t + l@ll1/2.r2)- (3.19)
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Regularity results

When the data f is in H(div; ), taking the divergence of the first equation of the prob-
lem (1.1)-(1.4) and owing to the other equations, we obtain a mixed problem of Dirichlet-
Neumann for the Laplace operator:

Ap =divf in Q2
— 2
L - @ on T’ (3.20)

%:f.non onI'h.

We suppose that f is in H'(Q)?, ¢ is in H¥?(I'?) and Uy is in HY2(T"!). In addition, we
assume matching conditions at the vertices of I' (see [7, Chap I]):

2 d dt
/ —‘p (a) —t7)) = (.0 = o) a + try0) T < +o0, J = L 111

d dt
/ [(F.n — Up)(ay — t7)) + —F—(ay + try) P < 400, J=I1,IV.  (3.21)
0 dT gy t

Theorem 3.3 For any data £ in H'(Q)?, ¢ in HY*(T?) and Uy in HY*(T"), where
H32(T?) and H'Y?(TY) are defined in (2.2) , verifying the matching conditions (3.21),
the solution (u,p) of the problem (1.1)-(1.4) belongs to H*(Q)? x H?(Q).

Proof. Owing to matching conditions (3.21), there exists py in H2(§2) such that Doz = @

17)
and (%)uq =f.n—Up. Let us set p = p — po. The problem (3.20) is equivalent to the
n
following problem: find § in H(Q;'?) such that

Vg € H'(:T?), a(V§, V) = /Q(divf + Apo)(x)q(x) dx.

Since the boundary between I'' and I'? is the set of vertices of I', the regularity of the
data implies that this homogeneous mixed problem of Dirichlet-Neumann for the Laplace
operator has a solution  in H2(Q) (see [12]). Hence, we derive the regularity of p and u. <

Remark 3.4 If (f.n—Uy) is Lipschitz-continuous on T or belongs to HX(T'y), J = I1,IV
and if ¢ belongs to CY*(T'y) or to H*(T'y), J = I, 111, the matching conditions (3.21) are
equivalent to simpler conditions:

d d
Y (ay) = (F.n—Up)(ay), J=1,1IT and — —F—(a,) = (f.n— Up)(ay), J = II,IV.
dr; ATy

SPECTRAL DISCRETIZATION
First spectral discretization
We define the discrete scalar product by

= Z (&, &) pips- (4.1)

and we denote by Zy the Lagrange interpolation operator at the points (;,&;), 0 < 4,7 < N
in Py (). We set

XN = IPN(Q)Z or XN = (]PNfl(A) ® IPN(A)) X (]PN(A) ® ]PNfl(A)). (42)
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We assume that the data f belongs to C°(€2)? and, for the sake of simplicity, that u and p
satisfy homogeneous boundary conditions, that is to say, we set ¢ = 0, Uy = 0in (1.1)-(1.4).
avances From the variational formulation (3.2)-(3.3), we derive the following discrete problem:

g dendese Find uy in Xy and py in Py (2) N M, where M is defined by (3.1), such that
Yy € Xy, (un,va)v + 08 (v, pn) = (£, va)w, (4.3)
Vagy € Py( Q)N M, by(un,gn) =0, (4.4)

where the form by is defined by
Vvy € ]PN(Q)2, VqN € ]PN(Q) bN(VN7qN) = (VN7V(1N)N- (45)
We have a classical saddle point problem. We verify the inf-sup condition

by (v,
oy € Py (@M, sup VM) 5o (4.6)

vnvexy |lonllrz)e
where 7 is a positive constant independent from N, by taking vy = Vqy. Hence, we derive
the following theorem.

Theorem 4.1 Let f be in C°(Q2)%.  Then problem (4.3), (4.4) has a unique solution
(uy,py) satisfying
lunllzz@e + lpnlla@) < C 1 Znfll 22 (4.7)

Next, we establish a theorem which implies the convergence of our discretization
method.

Theorem 4.2 Assume that the solution (u,p) of problem (4.8), (4.4) belongs to H*(2)% x
HH(Q), s > 0, and the data £ belongs to H7(Q)?, o > 1, where H*(Q), for non-integral
values of s, is defined in (2.1). Then, the following estimate holds

lu—un|rz@pe+p—pylla@ < c (N_S(Hu\ wo@)2 + 1pllasr@) + N_”HfHHa(mz) - (48)

Proof. From the abstract error estimate for the approximation of saddle-point problems
(see [7, Chap. IV]), we derive the following estimate:

= ux e + I = pllncey < ¢ (it fla = wyllza
wyeEVN

] vy(X).zy(X)dx — (VN,Z

b int (vl +_sup J2Y800- 2N O (s
VNEXN ZNEXN HZN||L2(Q)2

b(zn,qn) — bN(ZN7<1N))

+ inf  (llp—qnllmr@ + sup

anEP N (QNM ZvEXN lzn 2202
f(x). dx — (f,
+ o Jf69-zr(x)dx (,ZN)N)7 (4.9)
INEXN 1zl 22 02

where Vy is defined by
Vv ={wy € Xn; Vgny € Py(Q) N M, by(Wn,qn) =0}
Moreover, we recall (see [11, Chap. II, (1.16)]) that
.. c .
it il < £ _nt, (vl
Hence, we derive that, for all vy_; and fy_; in Py_1(Q)? and all gy_; € Py_1(Q) N M,

lu —unllr2@p2 + lp = plla @)
< c(lla=vnoillzzz + 1P — av-1llme) + [If = fv-illzz@)2 + I — Infllz2(p2). (4.10)

24
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Then, we choose vy_1 = IIy_ju (resp. fy_1 = IIy_:f), that is to say the orthogonal
projection of u (resp. f) on Py_1(Q)2 in L2(Q)? and qn_, = TN %p, where TN % p is the
orthogonal projection of p on Py_1(Q) N M in HY(Q). It remains to prove the estimate,
for any m > 1,

Vp € H™(Q) N M, |p— INZpllr@ < C N ||p||lame) (4.11)

On the one hand, this result is obvious for m = 1. On the other hand, for m > 2, we have
(see [7, Chap. III]),

1Ty
Y <
lp — Ty 2pllr e - 1(9 mMHP rn-1llm @)

<llp = Zn-1pllm @ < C N'™|p]

H™(Q)-

Then, an interpolation argument (see [11, TH 1.4, page 6]) gives (4.11). Finally, the re-
sult follows from (4.10), (4.11) and the classic estimate for the orthogonal projection on

Py_1(Q) in L*(Q). ¢

Remark 4.3 With the choice Xy = IPn(2)?, problem (4.3, (4.4) can be interpreted as a
collocation scheme. Indeed, by integrating by parts in the discrete bilinear form by with
respect to one of the two variables for each of the two terms of by (this process being
allowed by the precision of the quadrature rule), and choosing as test functions the Lagrange
polynomials associated with the grid points of Zn, it is easily seen that (4.3), (4.4) is
equivalent to the set of equations for uy in Py(Q)? and py in Pn(Q) N M:

uy(x) + Vpn(x) = f(x), VX € En,
divuy(x) =0, Vx € Zx NED,

————di = =) L
N(N+1)dlqu(X) (uy.n)(x), VxeZynNT

Second spectral discretization

In order to improve the approximation of the condition divu = 0, we can try to
decrease the dimension of the space Xy. So, we choose

Xy =Py_ (D)2 (4.12)

We note that, in this case the forms b(.,.) and by(.,.) are equal on Xy x Py (€). It does
not appear spurious modes for the pressure, as we can see in the following lemma.

Lemma 4.4 Let Zx be the space
ZN = {qN S PN(Q) n ]\/[ VVN S PN,l(Q)Z, b(vN,qN) = O}

Then Zx = {0}.

0
Proof. Let gy be in Zy. Since N is a polynomial of degree < N — 1 with respect to z,

which is orthogonal to IPy_1(£2), we can write:

an(z,y) = an(y) + Bn(x) Ln(y),

with ay and By in Py(Q). In the same way with y in place of z, we have:

an(@,y) = () + on(y) L (2),

with yy and dy in IPx(€2). Hence, we derive

an(@,y) = A+ pLy(z)La(y),
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where A and p are real numbers. But, since Ly(1) = 0, the condition:
Yy € [-1,1], n(1,y) =0
implies A = = 0. &
We have to study the following discrete problem:
Find uy in Py_1(22)? and py in Px(Q) N M such that
Vvy € Pyo1(Q)%, (uy, viv)w +b(v, o) = (£, v, (4.13)
Vay € PN(Q)N M,  bluy,qn) = 0. (4.14)

For the inf-sup condition, the choice vy = Vquy is no longer available, since vy must
be in Py_1(Q)2. In fact, in the next lemma, we find a inf-sup constant depending on N.

Lemma 4.5 There exists a constant ¢ > 0 independent on N such that

b(v,
Yy € Py (Q) N HY(Q;T?), sup bva ). > eN7Ygw i) (4.15)
vxePy_y (@2 [[Villzz )2
On the one hand, we note that

N

n=0

where ay is a polynomial of degree < N — 1. Then, we have

Iq Oqx ,
83];[ (z,y) = HN,l(a—;v)(Ly) +dy(2)Ln(y),

which implies, using (2.7) and the inverse inequality (2.10),

q; 0q; 3
o ) s + e NElanloa- (4.18)

@) < [x-a(

On the other hand, in view of (2.8), we can write

MG (0 = 3 T 2)00) = (2N = D))+ 1),

where 7y (z,y) is a polynomial of Py () of degree < N — 1 with respect to y. The
orthogonality properties imply

gy
IMx-1(5, " )HLZ(Q) 22\ N - *HGNHOA (4.19)
By combining this inequality with (4.18), we obtain

g g
||*|\L2(n < My (5,7 )||L2(Q)+CNHHN (5 o )| 20

gy
8,

. Thus, we obtain
IVaxllzzez < e NTn-1(Vay)lz2@e- (4.20)
Next, the equality (4.16) yields

IVanllzz@) < IVan ez + lan IV (Ex (@) Ly ()] 20

which implies, owing to (2.7) and (2.9),



Bernard (2018)

. N(N+1)
IVanllz@) < IVay iz + 2y =71 lawl- (4.21)
It remains to estimate |ay|. First, we have, owing to (4.16),
Zan y) +anLn(z)Ly(y).

n=0
But, Yy € [-1,1], ¢n(1,y) = 0, which implies

a,(1)=0, n=1,....,N—1 and anx(1)+ay=0.
If we set ay(z Z agLy(z), we derive
N-1
-3 o,
k=0

and, therefore, thanks to a discrete Cauchy-Schwarz inequality

N-1 2 l \/i
2

o

Janl < (X (S %s

k= 0 k=0

Then, in view of (4.19), we obtain

V2N
lan| £ ———=Tn-1(Vai)ll L2 (4.22)
4,/N -1
Finally, (4.20), (4.21) and (4.22) yield
IVanlzz@p < ¢ NTn-1(Van) 20
which, in view of (4.17), ends the proof. &

The bilinear form (.,.)y and b(.,.) satisfy Brezzi’s conditions with respect to IPy_;(£2)?
and Py(Q) N M (the bilinear form (.,.)y is continuous on IPy_;(€2)? and elliptic on
Pn_1(£2), the bilinear form b(.,.) is continuous on Py_1(2) x (Px(Q2) N M) and verifies
the “ inf-sup condition”), see [7, Theorem 2.3, pages 116,117], whence the theorem.

Theorem 4.6 Let £ be in C°(Q)2. Then problem (4.13), (4.14) has a unique solution
(un,pn) satisfying

lunllzz@pz + N7 lpnllae) < C IIZnfll2 - (4.23)
We establish the convergence of this second discretization in the following theorem.

Theorem 4.7 Assume that the solution (u,p) of problem ({.13), (4.14) belongs to H*(2)?
X H*T1(Q), s > 0, and the data £ belongs to H°(Q)?, ¢ > 1. Then, the following estimate
holds

[u = unllz2@e + N7 lp = pvllin < ¢ (N7 ([l + Ipllar@) + N1l mo@pe) -
(4.24)

Proof. The abstract error estimate, analogous to (4.39) but with much simplification
because of the exactness of the quadrature formulas, yields

lu = un 2@ + N"1p — pll e <c< inf [l — w2y
wNEVN

N\
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+vNElPiEf1(Q)2 b= vvllzz(oye b ey (Q)mM lp = awllrr e + IIf ~ ZNf”LZ(Q)Z> ,
where Vy is now the space
Vi = {wny € Py_1(2)% Var € Py(Q) N M, b(wy,qy) =0}

It remains to estimate the term infv [lu = Wy || £2(q)2. Since u is such that divu = 0 and
wneEVN

u.nyrt = 0, there exist a unique ¢ in H*(Q) (see [11, Chap. I and 4]) such that
u=curlyy and ¥ =0onT".

Moreover, if u belongs to H*(Q)?, we have [¢|g1q) < cflullgs@?2. Let us define the
operator 7% (see [7, Chap. 1I]) on H(A) by

Vio € H'(A), (7k)(Q) = (rB°0)(Q) + (- 15> + o)1, (4.29)

where the function ¢ stands for

Note that the definition of 7} is available, because ¢ belongs to HE(A), and that 73’3 and
¢ coincide in —1 and 1. In [8, Section 7], the following estimate is proven, for all r > 1
and all function ¢ in H"(A):

A (4.26)

o — #xelia + Nlp — 7xell,
Assuming s > 1, we set
Ry_1(u) = curl (1%, o #1¥) ).
Since (71'11\; )1 ° ﬁ}éﬂd})‘p = tp = 0, we can verify that Ry_;(u) belongs to Vi and, in
view of (4.26), that

1(z)

e — AN 0 AWl me) < N7 [l e ).

Finally, we derive, for s > 1,

mf Hu WN||[2(Q)2 < Huf RN 1( )HLZ(Q)Z < cN’SHu\

Hs(Q)2-
wneV (©)

¢|lul|z2(), an interpolation argument gives the

Since we have inf [[u — wyl/r2@qp <
wnEVN

result of approximation in Vy for any s > 0 and the estimate of the theorem follows. <

Third spectral discretization

The third discretization comes from the variational formulation (3.13), (3.14). We
define the space Xy by

Xy = ]PN(Q)2 nx = {VN € IPN(Q)Q; VN . = 0}

Let My be a subspace of Py () that we shall set later. Then, we consider the following
discrete problem:
Find uy in Xy and py in My such that

Vv € Xy, (un, V)N + O3 (v, pn) = (£, V)N, (4.27)
Van € My,  by(un,qn) =0, (4.28)



Bernard (2018)

where the form by is define by
Yvy € ]PN(Q)Z, Yqn € ]PN(Q), b;v(VNJ]N) = —(diVVN,qAT)N. (429)

In order to choose My, we begin to identify the spurious modes for the pressure. These
spurious modes for the pressure are derived by elimination from those of classic Stokes
problem (see [7, Chap. IV]). In particular, we can verify: Vv € Xy, by (v, qn) =0, for
gn(z,y) = Ly(z) or Ly(z)Ly(y). We obtain the following lemma.

Lemma 4.8 Let Z} be the space
2y ={av € Pn(); Yvn € X, by(vy.qn) =0}
Then Z3% 1is spanned by (Ly(x), Ly(x)Ln(y)).
Finally, let My stand for the orthogonal complement of Z3 for the scalar product in
L?(Q) or for the scalar product (.,.)y, owing to (2.11). The inf-sup condition is given in
the next lemma.

Lemma 4.9 There ezists a constant ¢ > 0 independent from N such that

b*
Vqy € My, sup M > cllan|lrz@)- (4.30)
VNEXN HUN H(div;Q)
Proof. Any function ¢y in My has the expansion
N—1N-1
m=0 n=0
N-1 N—
+ Z qm,NLm(‘r)(LN(E ) LN Y + Z qNn LN( ) LN*?(‘T))LTL(:U)‘
m=0 n=1
With the convention L_; = 0, we choose wy = (wy, zy) with
N—-1 m
Lipi1(x) = Lina(2)
mn—Ln
mzogoq p—— (v)
m+1(1) - Lm 1( )
- — " (L Ly_ 4.31
mZ:OfIm,N om 11 (Ln(y) — Ln—2(y)) ( )
and
R Ln+l(U) Lo (y)
Z Qm,an 2—
m=0 n=m-+1 n+1
N-1
Ly1(y) — Laa(y)
- W(Dn () — Ly_g(z)) =222l Zn ) 4.32
T;QN‘ (L () N—2(2)) o+ 1 ( )
Then, in view of (2.8), we have
divwy = —qy and wy € Xy, (4.33)

since wy . myr1 = zyjrt = 0. As in [6, Chap. 1V], we prove

> qfn,n

1
0 n=0 (m+ l)(nJFl)

: quN ! qu\n 17>~ (4.34)

2m0 7n+ n=1

N—-1N-1
lax o > (
m=l
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Hence, we derive, in the same way as in [8, Section 24]

8wN 821\]
1% ey + 1 o) < ellavlliza (435)

Next, setting wi (¢, y) = wn (x,y) — qooL1 () — gon L1 () (Ln(y) — Ly—2(y)), we note that
wi(£l,y) = 0 for =1 < y < 1. Then, the Poincaré-Friedrichs inequality, applied with
respect to x or y, yields

owy
ox

Hence, owing to (4.35) and the estimate

* 8ZN
lwillz2 ) < cll 2 and  [lznllree) < C||8fy\|L2<sz)‘

2
qo,N
qg,oJriNJr% < cllan 20,

which is derived from (4.34), we obtain
lwnllzz@ + llznlliz) < ellallzz - (4.36)
Finally (4.35) and (4.36) imply
Wil z@ivse) < cllanlzz)

and, in view of (4.33), the choice vy = wy in by (v, gn) is available and gives the inf-sup
condition (4.30). &

From the previous lemma, we derive the following theorem.
Theorem 4.10 Let f be in C°(Q)2. Then problem (4.27), (4.28) has a unique solution
(un, pn) satisfying
lanlla@ivie) + Ipxllzze) < C 1 ZnEllz@e- (4.37)
Sketch of the proof. From(4.27), we derive (un,un)ny = (Znyf,uy)n. Then, Owing to

divuy = 0 and (2.13), we derive ||un||m@iv;0) < 3l Znf|lL2@). Next, the inf-sup condition
(4.30) and (4.27) imply

1 b3 , 1 Inf -
pxllze@) < = sup vV, P) <= g (Znt, vy)v = (un, va)w
CvyeXy HUNHH(div;Q) CvneXn HUNHH(div;m

Hence, in view of (2.13), we obtain
18
lon N2y < ?HINfHH(Q)s

which ends the proof. &
Next, in the same way as in Theorem 4.2, we prove an optimal error estimate.

Theorem 4.11 Assume that the solution (u, p) of problem (4.27), (4.28) belongs to H*(£2)*
xH*(Q), s > 0, and the data £ belongs to H°(Q)?, o > 1. Then, the following estimate
holds

lu—uy

@2 +llp—pnllze <c (N_S(HUHHS(Q)Z + 1Pl as2y) + N_JHfHH”(Q)Z) - (4.38)

Sketch of the proof. Again, from the abstract error estimate for the approximation of
saddle-point problems (see [7, Chap. IV]), we derive the following estimate:
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lu—unllrz2@2 + [P — pyllree) < ¢ (w}/%va lu — wllL2)

Jovn(x).zy(x)dx — (VN,zN)N)

+ o (= vllzz + sup e
+qué11\f/1N(HP —anll e + JSup bz, ﬁZL[Lfgf:N o)
+ sup Jof(x) zn(x)dx — (fva)N> 7 (4.39)
ZNEXy 1z L2 ()2
where Vy is defined by
Vi = {wy € Xn; Ygn € My, by(wn,qn) = 0}.
Moreover, we still have (see [11, CH. II, (1.16)])
it Il < 2l (= vl
We end the proof in the same way as in Theorem 4.2. &

Remark 4.12 As for the first discretization, problem (4.27, (4.28) can be interpreted as
a collocation scheme. In the same way, we prove that (4.27), (4.28) is equivalent to the
set of equations for uy in Xy and py in My:

uy(x) + Vpn(x) = £(x), Vx € Ex N,
W%((u]v.n)(xpra;’%(x)) — (f.n)(x), VxeIynTIZ
divuy(x) =0, Vx € En.

Therefore, the discrete solution uy is exactly divergence-free, which is important for
some applications.

NUMERICAL RESULTS

The convergence of the methods corresponding to the first and third discretizations
were tested in a problem of the type (1.1)-(1.4), with homogeneous boundary conditions.
Precisely, we tested the convergence of these methods to the exact solution u(z,y) =
(rz? cos(my), —2xsin(ry) and p(z,y) = ysin(rz), which means that we stu-
died the convergence of these methods for Problem (1.1)-(1.4), with

f(x,y) = (72* cos(my) + Ty cos(ma), —2 sin(my) + sin(7))

and homogeneous boundary conditions. In addition, we tested the convergence to 0 of the
divergence for both methods.

We shall use the Lagrange polynomials. We denote I, the Lagrange polynomial asso-
ciated to the Gauss-Lobatto point &, 0 < r < N, the expression of which is

-y

[ = aa— (5.1)
. H (fr 75]')
J=0,j#r

The derivative /. verifies the following equalities
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. H (gm 5])
Vr=0,...,N,Ym=0,...,N, r £m, [(&) = =22 — ), (52
avances ey o T ﬁ & —¢) bm— &7 '
fgenias =g
N 1
Vr=0,...,N, (&) = > . (5.3)
j=0gr & &

Uzawa’s algorithm

Problem (4.3), (4.4), Problem (4.13), (4.14) and Problem (4.27), (4.28) are equivalent
to a linear system of the type :

(5.4)

MU + DP = MF,
DTU =0

The unkowns are the vectors U and P which represent respectively the velocity and the
pressure values on a given grid points. The data f is representated by the vector F on
the same grid points. The diagonal matrix M is the weight matrix, while the matrix D is
associated to the form by for the first and second spectral discretizations and to the form
by for the third spectral discretization and D? is the transposed matrix of D.
Uzawa’s algorithm consists in rewriting the first equation of system (5.4) as:
U = F — M~'DP and substituting in the second equation. We obtain a new equation for
the pressure P:
(D"M™'D)P = DTF. (5.5)

Next, we solve this symetric system either directly if the matrix DT M ~1D is invertible or
by diagonalizing the matrix DT M~'D if not, because the spurious modes correspond to
eigenvalues of the matrix equal to zero. Next, we compute the velocity via the formula

U=F-M"'DP
and its divergence by multiplying U on the left by the matrix DT. Finally, we test the
convergence to 0 of its divergence.
Implementation of the rst discretization

We take (I;(x)lk(y),0), (0,;(x)li(y)), 0 < i,j < N as a basis of Xy and
L (x)ls(y), 1 <r < N—-1,0<s < N as a basis of Py(©) N M. The unknowns are
the velocity uy = (ul,u%) and the pressure py. For j = 1,2, for 0 < r,s < N, we
denote U,ZSN = w (&, E,), FIN = fi(&. &), where f = (f1, f2) represents the data, and, for
1<r<N-—1,for 0<s <N, we denote PT{\Q = pn (&, &s). So, we have

PXL(2)l(y).  (5.6)

M=

N-1
Z U7’Nl (v), 7=1,2 and pn(z,y) = Z
r=1

7,5=0 0

s

Let us define the (N + 1)? x (N + 1)? diagonal matrix M = (m; ).(r.s)Jo<jkrs<y With

MGk),(rs) = { ?)jpk ii E:j 3 i 8 ]13 (5.7)

and the 2(N + 1)% x 2(N + 1)? diagonal matrix

M 0
2= ( v ) |
By setting vy (z,y) = (1;(2)lk(y),0), for 0 < j,k < N and, next, vy(z,y) = (0,1;(z)lx(y)

in (4.3), (4.4), we obtain the matrix system (5.4) where the column matrices U, P and F'
are defined by

32



Bernard (2018)

UlN Fl,N
U:( %),P (PY) and F = ( JékN>70Sjyk,8SN,1STSN*L
U]k E],k

and, with (.,.)y defined by (4.1), the 2(N + 1)? x (N? — 1) matrix D by

D= (P ) with D = () BN, D = (G @)

where (j,k) represents the row index, (r,s) the column index, 0 < 4,5,s < N,
1 <7 < N —1, for the matrices D'V and D*". Note that U and F are 2(N + 1)% x
matrices and P is a (N2 — 1) x 1 matrix.

Proposition 5.1 The (N? — 1) x (N? — 1) square matriz DT M D is invertible.

Proof. We just have to prove that the rank of the matrix D is N? — 1. Let us assume
that the rank of the matrix D is strictly smaller than N2 — 1. Then, there exist a sequence
of real number (g.,), 1 <7 < N —1,0 < s < N, where all the real numbers ¢, s are not

equal to zero, such that
N—1

Mz

0

r=1 s

where D, ; are the column vectors of the matrix D. Setting ¢ = Z Z Gr,slr(2)1s(y), the

previous equality is equivalent to
Yvy € X, b(vn,q) =0,
which is in contradiction with the property that there is no spurious mode. &

We have to compute the matrix DTM 1D = (b)), 1L <1t < N—=1,0 < s,u < N.
Owing to the previous expression of the matrices D and M, we obtain

bty (rs) = Ek;o p;pk (L (@)1 (), ()1 (9) ) (U ()10 (), () () ) v
N1

(L (@)1 (), L ()1, (1)) (L (2) (), 1 (2) 1 (y)) -

m,k=0 PmPk

Next, we change the numbering for the matrix DM ~1D. Let us define the mapping
¥ by
V(r,s), 1<r<N-1,0<s<N, p(rs)=1+r—1)(N+1)+s. (5.8)

Note that ¢ is a one to one mapping from {1,..., N —1} x {0,..., N} to {1,...,N* =1}
and we note
VI<i < N2 =1, o (i) = (¢u(0), ¥a(0)). (5.9)

Note that (i) — 1 and (i) are respectively the quotient and the remainder of the
euclidian division of i — 1 by N + 1. Then, we can denote

DTM™'D = (a; ;) 1<ijenz—1 With @;; = bizu).(rs), (5.10)

where (t,u) = (¢1(7), ¥2(i)) and (r,s) = (1(7), ¥2(4))-
Computing the elements a; ; of the matrix DTM 1D yields

) if wl( ) # 7/’1( ) and Uz( ) # ¢2(j)

) it t/fl( ) # 1/}1( ) and ¢a(i) = a(4)
Qi = Pili) E Pl iy (&)l () (Em)
3) if (i) = vl( j) and (i) # 1a(4)
Qij = Pynli) mZZOPm (i) Em) s ) (Em)
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= 1(j) and (i) = ¥2(J ) that is to say i=j

N
@i = Punli) X2 P Ly, iy)* + P ) mZ:O P Ly (i)
Thus, most of elements of the matrix DT M D are equal to zero.
Next, we determine the column matrix DTF = (¢;;) by

F2N

P (i) Z Pmlwl (gm) mwz(z +/}w1(2) 2 pml’l])g( (§7n) 1 (i),m”

m=0 m=0
Hence, owing to (5.2) and (5.3), we compute the list [I(&,), 0 < k,m < NJ, which
allows us to determine the elements of the matrices DT M 1D and DT F. Since the matrix
DTM~D is invertible, the equation (DT M~1D)X = DTF has a unique solution X. Then
we derive easily the column matrix P = (PN ) such that PN = = Xp@rs, L <r <N -1,
0 < s < N and, next, the column matrix U, thanks to the relation U = F — M~'DP.
Setting P, = PY, = 0 for 0 < ¢t < N in accordance with the boundary conditions, we

VI<i< N’ -1, ¢y =

obtain
N N
Umk F;Lk: Zl uk’ Umk*F‘2 Zl/ ‘fk mt
Finally, we derive
X J LN 2N
(divuy,divuy)y = - pipi (D (Uni 1 (&) + Ui 1,(6)))%,
i,j=0 m=0
N
(u—uy,u—uy)y = Z pipj(ui (&, &) — t] ) (ua(&i, &5) — z] ) )s
,j=0
N-1 N .
(p—pN,P—PN)N =), ZPin(P(fi,fj) - P3)°

1 0

<
Il

J

1
,(p—pn,p—pn)} and (u—uy,u— uN) for

Sl

We give the values of (divuy, divuy)
N between 4 and 21.

N 4 5 6 7 8 9
1
(divuy,divuy)i 6,85 0,27 1,12 0,0155 0,080 5,16.107*
1
(p—m,,p—pN);lv 0,06 0,02 2,7.107%  7,75.107* 7,59.107° 1,74.107°
(u—uy,u—uy)} 1,07 0,045 0,010 1,56.107 4,65.107% 3,52.107°
N 10 11 12 13 14 15
1
(divuy,divuy)} 3,14.107% 1,11.107° 7,86.107° 1,70.10~7 1,36.107% 1,92.10~°
1
(p—pn.p—pN)3  1,44.1076 2,78.1077 1,96.10~% 3,27.107° 2,03.1071° 2,97.10~1
1
(u—uy,u—upn)3 1,33.107* 5,6.1077  2,56.107% 6,62.107° 3,54.107% 6,03.10"1
N 16 17 18 19 20 21
1
(divuy,divuy)? 1,73.107% 1,68.107'% 1,69.107° 1,02.107*2 3,79.1072 1,91.107"!
1
(p—pn.p—pN)%  1,64.10712 2,15.1071 1,06.10-1 5,50.10-** 1,09.10~* 1,06.10~1
1
(u—uy,u—-uy)3 3,70.107° 4,37.10713 3,03.10"'? 3,03.107" 9,03.107* 2,69.10713

Table 4.1

We shall comment these results on comparing them with these ones of the third dis-

cretization.
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Implementation of the first discretization

We only sketch the method because the first and third discretizations are rather similar,
but we shall point out the differences between both discretizations.

First, the space Xy is not the same, because boundary conditions are taken in account.
Thus, we take (I;(z)lk(y),0), (0,1(z)l-(v)), 0 <4,5,s < N,1<r <N —1 as a basis of
Xn.

Second, we shall compute the pressure py as the orthogonal projection on My of an
element of IPy(Q2) and we take I,.(z)l5(y), 0 < r,s < N as a basis of Py(Q2). For 0 <r,s <
N, we denote U = up (&, &), P, = pn(§,&) and for 0 <7 < N, 1 <s < N —1, we
denote U2 = u3 (&, &). Let us define the matrix M, = M, where M is given by (5.7),
the (N2 — 1) x (N2 — 1) matrix My = (mj ). (ns)) With

0 if (r,s) # (5, k) -
PR () = L < < <k s< —
M(j,k),(r,s) { PPk if (T7S)=(j,k’), 0<j,r<N, 1<ks<N-1

and the 2N(N + 1) x 2N (N + 1) diagonal matrix

(M 0
= (05

In the same way as the first discretization, we derive the following matrix system

MU+ D,P = M,F,
{ DU -0 , (5.11)
where the column matrices U, P and F' are defined by
ULy N
U:( i ) P=(PY)and F = ( FJfN ) 0<j,kmrst<N 1<u<N-1
tau tu

and the 2N(N + 1) x (N + 1)? matrix D, by

Dp.— ( D%jﬁ ) with D2 = (—(1(@)l(w), L (@) (0)w), DN = (1@ (w), b (2)(0)).

We have to compute the matrix D*T]\/[»le*:(bZt,u),(ns))v 0<r,s,t,u<N. In the same
way as the first discretization, we obtain

N

et = 2 () ) @) b 0
N N-1

(U ()15 (y), 1 (@)l (0)) v (Lo (2) g (), 1 ()1 () -

T

m=0 k=1 PmPk

Next, as in the first discretization, we change the numbering for the matrix DT M 1D,
Let us define the mapping ¢, by

Y(r,s), 0<r,s <N, @, (r,s)=r(N+1)+s+1. (5.12)
Note that ¢, is a one to one mapping from {0,..., N}* to {1,..., (N + 1)?} and we note
V1<i <N =1, o1 (i) = (1), 95(0)). (5.13)

Note that ¢} (i) and ¢3(z) are respectively the quotient and the remainder of the euclidian
division of ¢ — 1 by N 4 1. Then, we can denote

DIMI'D, = (a7 hi<igevny with af; = b o), (5.14)
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where (¢,u) = (¥7(2),¥5(7)) and (r,s) = (V1(4),¥3()))-

Computing the elements a; ; of the matrix DT M D, yields

12 f¢(1)( i) # P7(j) and 5(i) # ¥5(5)
6 Ui(i) # vi() and 30) = 50)
@l 5 = Pui )Py ()PU3 () mZZO ol (€ @)U (Eut ()
3) if Y1 (i) = ¥7(j) and 1/)2(') # ¥3(5)
5 = PU@OPHGPUG) Z (@)U Ev30)
4) if i(3) = i) and 1/)2(7) = ¢3(j), that is to say i=j

N N-1
ai; = (Puy)*Pus ) Py (1 (Epr @)+ (Pus )Pz i) z ,,m(m(%(l)))
zero.
Next, we determine the column matrix DTF = (¢,) by

a;

N—
B FLN 2,N
V1<i<(N+1° i = —py@Peat) Zolm u1 @) Frlay T Z] Ue(&us ) F iy m)-
m=l m=
Now, we deal with the main difference between both discretizations. In the third
discretization, the matrix DTM1D, is not invertible and the computation of the pressure

is more complicated. First, let gy = Z Gruli(2)l,(y) be a spurious mode, that is to say

an element of the space Zj deﬁned in Lennna 4.8. In the same way as in the proof of
Proposition 5.1, considering that the matrices DT M 1D, and D, have the same rank, we
obtain the following equivalences

gy € 2y <= D.Q =0+ (D'M'D,)Q =0,

where @ is the column vector (g:u)o<tu<n. We can consider the matrix DTM1D, as the
matrix of a linear mapping f from the vector space IPx () into itself equipped with the
basis B = (I;(x)l;(y))o<i j<n. Therefore, Zj} is the eigenspace associated to the eigenvalue
equal to 0 of the linear mapping f or, equivalently, of its matrix DT M_1D,. Note that
this basis is orthonormal for the scalar product (.,.)y. We can diagonalize the positive
symmetric matrix DT M 1D, and, thus, there exist a diagonal matrix A and an orthogonal
matrix R such that DT M 1D, = RAR™" and such that the diagonal elements of A, that is
to say (Aii)1<i<(v4+1)2 are in increasing order. Note that the matrix A is the matrix of f in
a basis B’ = (hi)1<i<(v+1)2 of Pn (), which is orthonormal for the scalar product (.,.)n,
the elements of which are the eigenvectors of the matrix DT M 'D,. Let P’ be the column
matrix the elements of which are the components of the pressure py in the new basis B’
of Pn(£2). We have P/ = RTP = R7'P and the following equivalence

(DTM'DyP = DTF <= AP' = R"DTF. (5.15)
Since Z3 is a two dimensions space, By = (hy, hy) is the basis of Z5 and (hs)s<i<(nv11)2 18

a basis of My = (Z}%)*. Therefore, we determine the column vectors P’ and P by

1
Pl=P,=0, P = A—(RTD*TF)i, 3<i<(N+1)?and P= RP, (5.16)
and we have PT{‘; = Py (rs), 0 < 7,5 < N. In the same way as for the first discretization,
we derive the column matrix U by the relation U = F — M'D,P, which gives, for
0<jkt<N 1<u<N-I,

U =Fj + p— Zp, (E)PN., UL = FEN + p— Zp,l’ )P,

J r=0 U r=0
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Finally, considering the boundary conditions, we set Ut2, (’)N = f 1{,\[ =0,0<t <N, and we
obtain the same formulas as in the first discretization for (divuy,divuy)a,
1

(u—uy,u—uy)y and (p — py,p — py)n. We also give the values of (divuy,divuy)i,

(p —pn,p —pn)} and (uw — uy,u — uy)3 for N between 4 and 21.

] 4 5 6 7 8 9
(divuy,divuy)? 1,84.1071¢ 545,107 3,60.1071¢ 3,05.1071% 8,76.1071¢ 1,94.10~14
(p—pj\hp—pN)J%V 0,246 0,016 0,019 0,0039  8,43.10~* 1,55.1073
(u—uN7u—uN)]%\, 0,62 0,043 0,054 1,54.107% 2,48.107% 3,54.107°

1,24.107 9,28.1071 2,7.1071% 9,68.1071% 4,25.10713 3,43.107%3
2,3.107°  8,25.107* 4,33.1077 4,8.10™* 5,9.107° 3,1.10~*
7,0.107>  5,7.1077 1,34.107% 6,79.107° 1,85.10~% 6,23.10"M

S

(le uy, diqu)

(p—pN,P—pN)

(u—uy,u—uy)

Zl=Zeie

N 16 17 18 19 20 21
4,38.1071% 2,24.107'2 3,59.10~'* 1,9.10"'2 8,71.107'% 2,68.10~'2
6,11.107'1 2,05.10~* 4,96.107'% 1,44.10~* 3,24.10~'* 1,04.10*
1,93.1071° 4,53.1071% 1,57.107'2 3,66.10~'* 1,12.10713 2,38.10713

Z ol

(le uy, diqu)

(p—pn,p—pN)

(u—upy,u—uy)

Zwl= 2ol

Table 4.2

1
Logarithm to the basis 10 of (divuy,divuy)j
in function of N for the first and third discretizations

First discretization: ——— Third discretization: — =—

-10 |

-15 1

Figure 4.3
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CONCLUSION

Continuous problem and discretizations

We studied the Darcy problem by defining two equivalent variational formulations
corresponding to two different bilinear forms b and b*. The first one requests a more regular
pressure, which is bounded in H*(2). The second one is less classic and was introduced
by A. Quarteroni and A. Valli (see [14]). This second variational formulation is important
because it allowed us to constuct a spectral method which gives a divergence-free discrete
solution.

Moreover, by studying a mixed problem of Dirichlet-Neumann for the Laplace operator,
we proved regularity results with the solution(u, p) in H'(Q)? x H%(Q2) as long as the data
is regular enough.

The first variational formulation led us to two spectral discretizations. In the first one,
the discrete solution is not divergence-free, which is a disadvantage for some applications.
However, we obtain a fully optimal error estimate for the velocity and the pressure. In
the second discretization, it does not appear spurious modes for the pressure. Moreover,
because of the exactness of the quadrature formulas, the error estimate is easier to obtain.
However, the error estimate for the pressure is not optimal, because the inf-sup constant
depends on N.

The second variational formulation led to a third spectral discretization. There are
spurious modes, which complicate the study, but the discrete velocity is divergence-free,
which is important when the system is a stage of solving of a time-dependent problem, and
the error estimate for the velocity and the pressure is fully optimal. In conclusion, this
third discretization is the best discretization and we will only use it hereafter.

Comparison of both spectral discretizations

Tables 4.1 and 4.2 test the convergence of respectively the first and third discretiza-

tions to the exact solutions. For the first discretization, we see the convergence to zero of
1
(divuy,divuy), about 107! for N = 8 and about 107! for N = 19. Concerning the
1
third discretization, we see that the quantity (div uy, divuy)3 is very small for all values
of N, about 1071% for N = 4 and about 107'2 for N = 20. Thus, we verify that, in the
third discretization, the discrete solution uy is exactly divergence-free, which is important,
as we saw previously. This property appears clearly in Figure 4.3, which represents the
1

logarithm to the basis 10 of the quantity (divuy,divuy)} as a function of N, for even N
from 4 to 20, for both discretizations.

Regarding the velocity, the discrete solution uy converges fast to the exact solution u
for both discretizations. For the pressure, we also obtain fast convergence, except for odd
N in the third discretization.
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