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Abstract

This paper studies the Non-Line-Of-Sight condition mitigation issue in mobile subscriber 
positioning systems by weighting Time-Of-Arrival measures and applying geometrical re-
strictions. Particularly, this work departs from a more exact characterization of the signal 
statistics to achieve weighting factors able to reach a more effective mitigation, and con-
sequently a more accurate mobile subscriber positioning. In addition, restrictions based 
on the cell geometry are incorporated as a complementary refinement method. Therefore, 
three new methods with better properties than those taken from the literature and used 
as reference are introduced. These approaches are evaluated within a realistic simulation 
scenario.

Keywords. NLOS mitigation, TOA based positioning systems, WLLS, geometrical re-
strictions, wireless sensor networks.

Resumen

Este artículo estudia el problema de la mitigación de la condición de ausencia de Línea de
Visión en sistemas de posicionamiento de suscriptor móvil utilizando la ponderación de
medidas de Tiempo de Arribo y la aplicación de restricciones geométricas. En par-ticular,
este trabajo parte de una caracterización más exacta de la estadística de la señal, para
conseguir factores de ponderación con capacidad de alcanzar una mitigación más efectiva,
y consecuentemente un posicionamiento más preciso del suscriptor móvil. Adi-
cionalmente, se incorporan restricciones basadas en la geometría de la celda como método
de refinamiento complementario. Se presentan en consecuencia tres nuevos métodos de
posicionamiento con mejores propiedades que los tomados de la literatura y usados como
referencia. Estas técnicas se evalúan dentro de un escenario de simulación realista.

Palabras Clave. Mitigación NLOS, sistemas de posicionamiento basados en Tiempo de
Arribo (TOA), WLLS, restricciones geométricas, redes de sensores inalámbricos.

Introduction

Positioning of a mobile subscriber is a complex task
with the capability of adding value to services and appli-
cations. The knowledge of the positioning of a certain
device is important, but the applications and services
to be provisioned from the awareness of that position
will probably be more useful from the perspective of
the user, and consequently more impacting to our soci-
ety. Therefore a close relationship and dynamism are
associated to: a) wireless communications that provide
user ubiquity, b) positioning technologies that refer to
the ways in which the measured signals from network

and/or a mobile subscriber are treated to compute its
position, and c) Location Based Services (LBS). In fact,
LBS are a key piece of this dynamism, not just because
LBS are hunger of more resources from network de-
vices but also because they take advantage of the virtu-
osities of new communication technologies to construct
new possibilities of relation among users, between users
and service providers, and also between providers and
third parties such as contents’ providers. Neither it is
strange that all these systems’ elements are object of
permanent research and keep in permanent revision [1–
14].
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This paper focuses in network based positioning tech-
nologies and particularly in the mitigation of an im-
portant issue, which strongly degrades the accuracy of 
the subscriber due to the specific propagation conditions 
of the wireless signals, known as Non Line Of Sight 
(NLOS) condition. Furthermore, enabling positioning 
technologies based on Time Of Arrival (TOA) measures 
will be used along this document to illustrate the prob-
lem and the means employed to mitigate it, within a 
simulation environment developed to reproduce realis-
tic wireless propagation conditions.

The Positioning Problem

Torrieri [15] established the statistical principles for pas-
sive location systems, and generalized this problem as-
suming the measurements vector m, may be view as a 
function of the position vector x, plus additive noise n, 
as in (1):

m = f (x) + n (1)

The actual nature of f(x) depends of the type of the mea-
surements’ set used for computing the positioning, and
in the case of range-based methods such as TOA, TDOA
and RSSI, it is a nonlinear function related to the range
among the subscriber position and those BS’s partici-
pating in the positioning. The expression for TOA is
exhibited in (2); where L refers to the number of BSs,
x=(x,y) to the true coordinates of the subscriber posi-
tion, andr

i
=(x

i
,y

i
) denotes to the position of BS

i
used

as reference.

f
TOAi

(x) = ‖x− r
i
‖ ; ∀i = 1, 2, ..., L (2)

The general nonlinear solution corresponds to the mini-
mization of the noise in (1) by using Maximum Likeli-
hood (ML), Nonlinear Least Squares (NLS) or the Weighted
Nonlinear Squares (WNLS) approach [18]. The WNLS
solution requires minimization of a cost function, where
the actual function J

WNLS
depends of the type of mea-

surements employed and its general form is shown in
(3).

J
WNLS

(x) = [m− f (x)]
T

C
−1

n

[m− f (x)]

with C
n
= E

{

nn
T

} (3)

Performing a ML solution for this estimation problem
requires noise statistics, and when the measurement noise
n in (1) is zero-mean and Gaussian distributed with co-
variance matrixC

n
, it may be easily shown as ML scheme

reduces to the WNLS solution, and finally to NLS when
measurement noise is statistically independent and iden-
tically distributed. The ML approach requires a high
complexity when grid search is achieved, and therefore
global solution may not be guaranteed, but in general

its accuracy is the highest, especially whenC
n

is also a
function of subscriber position because if it is the case,
the cost function includes the term ln[det(C

n
)] that avoids

the selection of positions with large uncertainty [16].
On the other hand, NLS does not require noise statistics
but also involves the same issues as ML.

The vector function f(x) in (1), which relates the posi-
tion in the real worldx, to the measurement spacem
is nonlinear in general, but it becomes linear through
a Taylor series expansion around an arbitrary pointx0
located near the subscriber position, and it requires the
Jacobian matrix forf(x) evaluated inx0, for the L mea-
surements [15–17].

Assuming a zero mean Gaussian distribution for the noise
vectorn, a Linearized Least Squares position Estimator
was proposed by Torrieri [15]. This solution uses the
iterative algorithm known as Gauss-Newton method for
reaching the cost function minimum, but others meth-
ods such as Newton-Raphson or Steepest Descent may
be used instead [16, 17].

It is also possible to convert the nonlinear formulation
in (1) into a set of linear equations with the form in
(4) under the assumption that measurements errors are
small enough. The actual form of matrixA and vec-
tor b depends of the kind of measurements chosen by
the enabling technology. Expressions (5) and (6) ex-
hibit the corresponding structures for the case of TOA
based positioning systems when the controlling BS is
assumed to be at the origin, and wherec refers to the
light speed. Linear procedures include to Linear Least
Squares (LLS), Weighted LLS (WLLS) and the sub-
space estimators [18]. LLS and WLLS are the linear
counterparts of NLS and WNLS respectively.
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and m
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= c · t
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(6)

The LLS solution is shown in (7), and this procedure
may also be applied to TDOA with certain modifica-
tions [17].

x̂ =
(

A
T

A

)

−1

A
T

b (7)
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In addition, it is worth to note as all of these LLS pro-
cedures dismiss the noise statistics and therefore will
achieve their most performance in case of low noise pat-
terns.

The WLLS approach emerges from including a weight-
ing matrixW, within the cost function as it is shown in
(8). This assessment matrix is precisely the inverse of
the covariance noise matrix, and after cost function min-
imization, the WLLS estimator is achieved as in (9):

J
WLLS

= E

{

(Ax− b)
T

W (Ax− b)

}

(8)

x̂ =
(

A
T

WA

)

−1

A
T

Wb (9)

The particular weighting matrixW depends of the type
of measurements, and it is usually dependent of the dis-
tances between subscriber and BSs due to transforma-
tions performed during formulation of the linear system.
Expression (10) exhibits this matrix for the case of TOA
based positioning. In this case, the set of required dis-
tances d

i
may be replaced for the set of measurements

m
i
, but in case of TDOA or AOA, a LLS procedure

should be firstly performed to estimate subscriber posi-
tion to properly figure out the distances required within
W, and a second step is also required to achieve the re-
fined WLLS position estimation. In case of TDOA, the
weighting matrix in (11) may also be also used as first
step when a WLLS initialization is preferred. Further-
more, an iterative process may be performed in order to
minimize the function cost in (8) and achieve the maxi-
mum accuracy, and consequently the Best Linear Unbi-
ased Estimator (BLUE) algorithm, but in general a two-
step LS algorithm is adequate. Alternative formulations
for the positioning problem are possible, but results in
terms of accuracy are not important [22].
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Whichever would be the positioning technique employed,
it should be kept in mind that every set of measurements
performed by a sensor reduces the positioning to a re-
gion shaped in a way related to the nature of the mea-
surements, a feasible region. A TOA based position-
ing corresponds to a circular-circular system, whilst a
hyperbolic-hyperbolicsystem is characteristic of a TDOA

based positioning. Furthermore, it must be noted as hy-
brid techniques exhibit a better behavior than homoge-
neous ones since it is a well-known principle that errors
achieved from a particular positioning technique may
be overcome with the application of another one [23].
Positioning accuracy may also take advantage of spa-
tial diversity and mobile system’s dynamic [19, 20, 30].
In fact, Kalman Filter [21, 29] and its variants [25, 28]
have been probed their efficacy by using the mobility
dynamics.

The signal model and the NLOS issue in the mobile
subscriber positioning problem

Due to the presence of obstacles between emitter and
transmitter, received signal is scattered in space and time,
and the LOS component may be strongly degraded or
even completely shadowed. However, receiver gener-
ally uses the most powerful arriving components and
therefore, in case of shadowing, LOS component is even-
tually discarded, and measures are achieved under a NLOS
condition. This NLOS multipath signal travels a longer
distance than the LOS component to reach the receiver
and consequently the measures are biased as it is shown
in (12), whereq is precisely the vector which contains
biases due to NLOS.

m = f (x) + n+ q

with q = [q1, q2, . . . , qL]
T

(12)

These biases are positive random variables. When q
i
=0,

it refers to a LOS condition, and when q
i
»|n

i
|, it refers

to a strong NLOS condition, being the latter the case
commented along this paper. Bias nature is associated
to propagation conditions, and in case of TOA based
systems, it may be related directly to the Excess De-
lay through the Power Delay Profile (PDP). Further-
more, the Greenstein model [9] has been considered to
perform this characterization, since it adjusts to several
measurement - based models and incorporates their in-
formation into a small number of parameters to charac-
terize the path-gain/delay spread propagation channel,
and even this model has been incorporated to COST-
231 and eventually to the COST-259 Directional Chan-
nel Model [12, 25].

NLOS environments are modeled using an exponential
distribution for the excess delay for a particular location
as it is shown in (13), and the Greenstein model charac-
terizes the required RMS Delay Spreadτ

rms
in (14) as

a random variable and also as a function of the distance
between emitter and receiver, whereξ is a lognormal
random variable. Hence,Ξ=10log(ξ), is a zero mean
Gaussian variable over the terrain, with a standard devi-
ationσ

ξ
that lies between 2 and 6 [dB]. Furthermore, T1

corresponds to the median value ofτ
rms

at d=1 [km],
andε is an exponent that lies between 0.5-1.0. It has
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been set to 0.5 for the simulations exhibited in this doc-
ument.

f
τ
(τ) =

1

τ
rms

exp

[

−

τ

τ
rms

]

u (τ) (13)

τ
rms

= T1d
ε

ξ (14)

The Greenstein model also includes the gain path g.
This gain is computed with the use of the expression
in (15), where d is the distance in kilometers, G1 is the
median value of g at d=1 [km],β is the loss path prop-
agation factor which lies between 3 and 4, andx is a
lognormal random variable. Therefore,X=10log(x) is
a zero mean Gaussian with a standard deviationσ

x
be-

tween 6 and 12 [dB]. And finally, the correlation factor
amongX andΞ has been set asρ=-0.7 [9]. Therefore
E{X.Ξ}= ρ.σ

x
.σ

ξ
.

g =
G1

dβ
x (15)

The mean and the standard deviation for the RMS Delay
Spread modeled as in (14) are presented as a function
of distance within (16) and (17) respectively, being m

z

andσ
z

the mean and standard deviation of the scaled
random variableZ=Ξ.ln(10)/10. These expressions are
derived in the Annex.

E {τ
rms

} = T1d
ε

e
mz+σ

2

z/2 (16)

σ
τrms

=

√

var {τ
rms

} = kT1d
ε (17)

Since the standard deviation for Delay Spread in (17) in-
creases proportionally to T1dε, it is reasonable to mod-
ify the weights in the WLLS algorithm in (10) as in (18)
to include this information as a mean for NLOS mitiga-
tion. This new version of the WLLS algorithm will be
called NLOS WLLS in this document.

W
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= diag
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d
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, ...,
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d
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)

(18)

In addition, and due the set of TOA measures are biased,
a geometric mitigation will also be tested. This Geo-
metric based mitigation will simply estimate subscriber
position as the centroid of the resulting triangle from the
intersection of the Circular Lines Of Position described
by the measures achieved from the three nearest BS’s.

Finally, two new algorithms resulting from the incorpo-
ration of Geometric restrictions to our proposed NLOS
WLLS are also evaluated in the next section.

Figure 1: Subscriber Average Positioning Error for a dispersive
NLOS environment, T1=0.4[us] and 7 BS’s. A) Top: original
WLLS algorithm. B) Bottom: NLOS WLLS method with ε=1.

Algorithms’ Performance Evaluation

This section includes some simulations provided to eval-
uate several positioning algorithms and their capabili-
ties to mitigate the NLOS condition.

To perform positioning evaluation, a simulation plat-
form compounded for a seven hexagonal cell cluster has
been considered. The control site is located at the co-
ordinate system origin, and a rectangular grid has been
constructed within the control cell to evaluate subscriber
positioning algorithms’ behavior for each point within
the cell.

A realistic scenario is considered. It assumes that NLOS
condition is present in the seven BS’s. However, NLOS
is assumed to be more moderated for the communica-
tions between the subscriber and the control site. For
this latter BS, the Greenstein model is used as in the
rest of sites with the only difference that the propaga-
tion losses factorβ is reduced from 3.7 to 2.5. However
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Figure 2: Subscriber Average Positioning Error for a dispersive
NLOS environment. A) Top: Based on Geometrical Restrictions
and 3 BS’s. B) Bottom: 7 BS’s - NLOS WLLS with ε=1 and Soft
Geometrical Restrictions.

signal strength information is not relevant for results in
this paper.

Particularly, the required parameters for the Greenstein
model take the following values suitable for the urban
case [9]: T1=0.4 [us],ε=0.5,σ

x
=8.0 [dB],σ

ξ
=2.0 [dB],

andρ=-0.75. T1 has been set in agree to the GTU COST
259 model [12, 26] and it may be considered a moderate
dispersive environment.

Figure 1 and Figure 2 exhibit the average positioning
errors for subscribers within a cell with radius R=1000
[m] for several of the methods considered in this study.
Particularly, Figure 1 shows the behavior from the appli-
cation of both the original WLLS method described by
(9) and (10), and the proposed NLOS WLLS algorithm
with modified weights as in (18). Clearly the proposed
method achieves a better NLOS mitigation especially
near the control site, but it also exhibits accuracy degra-

dation in the boundaries.

Figure 2 on the other hand, shows the behavior of the
considered Geometrical Positioning and the positive ben-
efit of adding certain geometrical restrictions to the NLOS
WLLS algorithm. In fact, the Geometrical Positioning
exhibits a better behavior near the cell boundaries when
it is compared with methods in Figure 1. Furthermore,
when this information is added to the NLOS WLLS
method, the new algorithm provides the best mitigation
of them all.

To incorporate the information provided by the geomet-
rical restriction, positioning is performed for the both
basic algorithms; then, when NLOS WLLS procedure
estimates that subscriber is located in the outer 30% por-
tion of the cell, the positioning based on Geometrical
restrictions is used to provide the subscriber position. If
a hard fusion is performed, this latter position is used
instead of the first. On the other hand, a soft decision
implies to take the average of both estimations.

This second technique is the employed in simulation at
the bottom of Figure 2.

Figure 3 compares the CDF’s for the positioning error
from various mitigation techniques commented along
this paper. It includes the original WLLS algorithm, the
proposed NLOS WLLS method, the positioning based
on Geometrical restrictions, the Geometric Assisted Lo-
cation Estimator (GALE) approach in [24], the Yi-Long
algorithm in [27], and the two algorithms that introduce
geometrical restrictions to the proposed NLOS WLLS
method. All this algorithms use measures provided by
the seven BS’s with the exception of the algorithm based
on Geometrical restrictions that use just the three near-
est stations. These results confirms NLOS WLLS plus
soft geometrical restrictions algorithm as the best among
the whole set of implemented methods. In fact, this al-
gorithm exhibits average positioning errors below 162[m]
in 70% of the cases, and below 191 [m] in 95% of the
cases. NLOS WLLS plus hard geometrical restrictions
algorithms also makes a good job and registers average
positioning errors below 172 [m] in 70% of the cases
and below 188 [m] in the 95% of the cases. These latter
values are slightly better than those provided by the Ge-
ometric algorithm which exhibits average positioning
errors below 175 [m] in the 70% of the cases and below

Figure 3: Cumulative Distribution Function for subscriber p osi-
tioning error and different methods.
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188 [m] in the 95% of the cases although a good portion 
of its data registers up to 25 [m] of additional error. In 
addition, the original NLOS WLLS algorithm achieves 
an average positioning error below 162 [m] in the 70%
of the cases and below 208 [m] in the 95% of the cases, 
whilst the traditional WLLS algorithm reaches an aver-
age positioning error below 179 [m] for the 70% of the 
cases and below 215 [m] for the 95% of the cases. It 
means that NLOS WLLS plus soft Geometrical restric-
tions provides an additional mitigation of around of 15-
45 [m] when it is compared with the traditional WLLS 
method in this moderate dispersive environment. Sim-
ulations performed within a more dispersive environ-
ment have shown as positioning degrades for all meth-
ods but also as these gains enhance. In addition, Yi-
Long approach [27] and particularly GALE method [24] 
exhibited a poor performance within our NLOS simula-
tion scenery where Gaussian measurement noise has not 
been included. In fact, our best approach provides an 
additional mitigation of around 35-70[m] respect to Yi-
Long approach and around 50-70[m] respect to GALE. 
These two algorithms worked even worse than the posi-
tioning based on a simple Geometrical restriction in our 
simulations.

Summary

Non Line Of Sight (NLOS) condition strongly degrades 
the performance of subscriber positioning in wireless 
communication systems. Robust traditional algorithms, 
originally developed to use Line Of Sight (LOS) signal, 
fail in current dispersive scenarios. Several mitigation 
techniques have been proposed. Some of them consider 
the weighting of the available measures in order to get 
the better of each one. Others use geometrical restric-
tions to improve accuracy, and another group includes 
some lateral information to properly evaluate the qual-
ity of the measure and hence incorporate this data in the 
positioning process.

The most relevant approaches for positioning and NLOS 
mitigation have been simulated within realistic environ-
ments along this document for small sized cells. A new 
mitigation algorithm that considers both the weighting 
of measures and soft geometrical restrictions has been 
proposed for positioning based on TOA. This new algo-
rithm makes a better work than those provided by the 
literature and used as reference. In fact, this new al-
gorithm achieves a positioning error below 162 [m] for 
the 70% of the cases and below 191[m] for the 95%
of the cases within a moderate dispersive environment 
(T1=0.4 [us]). These values are at least 10% lower than 
those provided by the reference WLLS algorithm. There-
fore average positioning error decreases between 15 [m] 
and 45 [m] for this new method, around 35-70 [m] in 
comparison with Yi-Long approach, and around 50-70 
[m] when it is compared with GALE. However, 163[m] 
is still high when it is compared with the 100 [m] re-
quired by the E911 regulation, and therefore new meth-
ods that better exploit the system characteristics to take

advantage of its dynamics and signal diversity will be
the object of further research.
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Annex. Derivation of the first two moments for the
RMS Delay Spread defined as the Greenstein Model
The derivation of these moments is eased by the fact
thatξ in (14) is lognormal and therefore, it is related to
Ξ as it is shown in (19), and admits to be expressed in
relation to a new scaled variablez with mean m

z
and

standard deviationσ
z

as it is shown in (20):

ξ = e
Ξ. ln 10/10

= e
z

with z =
ln 10

10
Ξ

(19)

m
z
= E {z} =

ln 10

10
m

ξ

σ
z
=
√

var {z} =
ln 10

10
σ
ξ

(20)

The computation ofξ may be related to the characteris-
tic functionΦ

z
(s)=E{ezs} as follows:

E {ξ} = E {e
z

} = Φ
z
(s = 1)

= e
s.mz+s

2
.σ

2

z/2

∣

∣

∣

s=1

= e
mz+σ

2

z/2
(21)

Similarly, the second moment may be performed as it is
shown in (22):

E
{

ξ
2
}

= E
{

e
2z
}

= Φ
z
(s = 2)

= e
s.mz+s

2
σ

2
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= e
2mz+2σ

2
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(22)

And the variance may be achieved as in (23):

var {ξ} = E
{

ξ
2
}

− E
2
{ξ}

= e
2mz+σ

2

z
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e
σ

2

z
− 1

) (23)

Furthermore, the statistics for the RMS delay spread are
finally derived within (24) and (25):

E {τ
rms

} = T1d
ε

e
mz+σ

2

z/2 (24)

σ
τrms

= E {τ
rms

}

√

eσ
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z − 1 = kT1d

ε (25)


