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Abstract

This paperstudiesthe Non-Line-Of-Sightcondition mitigationissuein mobile subscriber
positioningsystemsdy weighting Time-Of-Arrival measuresndapplyinggeometricale-
strictions. Particularly,this work departsfrom a moreexactcharacterizatiorf the signal
statisticsto achieveweightingfactorsableto reacha more effective mitigation, and con-
sequentlya more accuratemobile subscribempositioning. In addition, restrictionsbased
onthe cell geometryareincorporatecasa complementaryefinemenimethod. Therefore,
three new methodswith better propertiesthan thosetakenfrom the literature and used
asreferenceareintroduced. Theseapproachesire evaluatedwithin a realisticsimulation
scenario.

Keywords. NLOS mitigation, TOA basedpositioningsystemsWLLS, geometricalre-
strictions,wirelesssensometworks.

Mitigacion dela Condicién NLOS para Sistemasde Posicionamientode Suscriptor Mévil usando
Ponderaciénde Medidasy RestriccionesGeométricas

Resumen

Estearticuloestudiael problemade la mitigacionde la condiciénde ausenciale Lineade
Vision en sistemagde posicionamientale suscriptormovil utilizando la ponderaciorde
medidasde Tiempode Arribo y la aplicacionde restriccioneggeométricasEn par-ticular,
estetrabajo parte de una caracterizaciérméas exactade la estadisticade la sefal,para
conseguirfactoresde ponderaciércon capacidadie alcanzaunamitigacionmasefectiva,
y consecuentementain posicionamientomas preciso del suscriptor moévil. Adi-

cionalmenteseincorporanrestriccionedasadagnla geometriade la celdacomométodo
de refinamientocomplementarioSe presentaren consecuencidres nuevosmétodosde
posicionamienta@on mejorespropiedadesjuelos tomadosde la literaturay usadossomo
referenciaEstas técnicase evaluamentro de un escenarite simulaciorrealista.

Palabras Clave. Mitigacion NLOS, sistemagie posicionamientdasadosn Tiempode
Arribo (TOA), WLLS, restriccionegeométricasredesde sensorefnalambricos.

Introduction and/or a mobile subscriber are treated to compute its
position, and c) Location Based Services (LBS). In fact,

Positioning of a mobile subscriber is a complex task LBS are a key piece of this dynamism, not just because
with the capability of adding value to services and appli- LBS are hunger of more resources from network de-
cations. The knowledge of the positioning of a certain Vices but also because they take advantage of the virtu-
device is important, but the applications and services 0sities of new communication technologies to construct
to be provisioned from the awareness of that position New possibilities of relation among users, between users
will probably be more useful from the perspective of and service providers, and also between providers and
the user, and Consequenﬂy more impacting to our soci- third pal’ties such as contents’ prOViderS. Neither it is
ety. Therefore a close relationship and dynamism are Strange that all these systems’ elements are object of
associated to: a) wireless communications that provide Permanent research and keep in permanent revision [1-
user ubiquity, b) positioning technologies that refer to 14].
the ways in which the measured signals from network

ISSN 1390-5384

Avances en Ciencias e Ingenierias, 2015, Vol. 7, No. 2, Pags. C61-C68 m

http://avances.usfq.edu.ec



Av. Cienc. Ing. (Quito), 2015,Vol. 7, No. 2, Pags. C61-C68

Jativa et al.

This paperfocusesin networkbasedpositioningtech-
nologiesand particularly in the mitigation of an im-
portantissue,which stronglydegradeshe accuracyof
thesubscribedueto thespecificpropagatiortonditions
of the wirelesssignals,known as Non Line Of Sight
(NLOS) condition. Furthermoregnablingpositioning
technologiedasedn Time Of Arrival (TOA) measures
will beusedalongthis documento illustratethe prob-
lem and the meansemployedto mitigate it, within a
simulationenvironmentdevelopedo reproduceaealis-
tic wireless propagatioconditions.

The Positioning Problem

Torrieri[15] establishethestatisticalprinciplesfor pas-
sive locationsystemsandgeneralizedhis problemas-
sumingthe measurementgectorm, may be view asa
functionof the positionvectorx, plusadditivenoisen,

asin(1):

m=f(x)+n 1)

The actual nature of %) depends of the type of the mea-

its accuracy is the highest, especially wi&nis also a
function of subscriber position because if it is the case,
the cost function includes the term In[d&t()] that avoids
the selection of positions with large uncertainty|[16].
On the other hand, NLS does not require noise statistics
but also involves the same issues as ML.

The vector function &) in (1), which relates the posi-
tion in the real worldx, to the measurement spage

is nonlinear in general, but it becomes linear through
a Taylor series expansion around an arbitrary pgjnt
located near the subscriber position, and it requires the
Jacobian matrix fof(x) evaluated irxg, for the L mea-
surements [15-17].

Assuming a zero mean Gaussian distribution for the noise
vectorn, a Linearized Least Squares position Estimator
was proposed by Torrieri [15]. This solution uses the
iterative algorithm known as Gauss-Newton method for
reaching the cost function minimum, but others meth-
ods such as Newton-Raphson or Steepest Descent may
be used instead [16,/17].

It is also possible to convert the nonlinear formulation
in (1) into a set of linear equations with the form in

surements’ set used for computing the positioning, and (4) under the assumption that measurements errors are
in the case of range-based methods such as TOA, TDOA small enough. The actual form of matrx and vec-

and RSSI, it is a nonlinear function related to the range
among the subscriber position and those BS’s partici-
pating in the positioning. The expression for TOA is

exhibited in (2); where L refers to the number of BSs,

x=(x,y) to the true coordinates of the subscriber posi-
tion, andr;=(x;,y;) denotes to the position of B&ised

as reference.

froa, ®)=|x—ri|; Vi=1,2,..,L (2)
The general nonlinear solution corresponds to the mini-
mization of the noise in (1) by using Maximum Likeli-

tor b depends of the kind of measurements chosen by
the enabling technology. Expressions (5) and (6) ex-
hibit the corresponding structures for the case of TOA
based positioning systems when the controlling BS is
assumed to be at the origin, and whereefers to the
light speed. Linear procedures include to Linear Least
Squares (LLS), Weighted LLS (WLLS) and the sub-
space estimators [18]. LLS and WLLS are the linear
counterparts of NLS and WNLS respectively.

hood (ML), Nonlinear Least Squares (NLS) or the Weighted

Nonlinear Squares (WNLS) approach/[18]. The WNLS
solution requires minimization of a cost function, where
the actual functiony s depends of the type of mea-
surements employed and its general form is shown in

3).

Jwnes (%) = m — £ (x)]" C;t [m — f (x)]

with C,, = F {nnT} (3)

Performing a ML solution for this estimation problem

requires noise statistics, and when the measurement noise

nin (1) is zero-mean and Gaussian distributed with co-

Ax=b (4)
T2 Y2
3 Y3
Aro4 = . 5)
rrL YL
r% — m% + mi
b | e ma A my
TOA = 3
(6)

r% —m%—i—m%
with 2 =22 +9% Vi=1,..,
and m;=c-t;; Vi=1,2,..

L
L

e

variance matrixC,,, it may be easily shownas ML scheme The S solution is shown in (7), and this procedure

reduces to the WNLS solution, and finally to NLS when

may also be applied to TDOA with certain modifica-

measurementnoise is statistically independentand iden- tiong f17].

tically distributed. The ML approach requires a high

complexity when grid search is achieved, and therefore

global solution may not be guaranteed, but in general

%= (ATA)"'ATb (7)
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In addition, it is worth to note as all of these LLS pro- based positioning. Furthermore, it must be noted as hy-
cedures dismiss the noise statistics and therefore will brid techniques exhibit a better behavior than homoge-
achieve their most performance in case of low noise pat- neous ones since it is a well-known principle that errors
terns. achieved from a particular positioning technique may
be overcome with the application of another one [23].
Positioning accuracy may also take advantage of spa-
tial diversity and mobile system’s dynamic [19] 20, 30].
In fact, Kalman Filter|[21, 29] and its variants [25, 28]
have been probed their efficacy by using the mobility
dynamics.

The WLLS approach emerges from including a weight-
ing matrixW, within the cost function as it is shown in
(8). This assessment matrix is precisely the inverse of
the covariance noise matrix, and after cost function min-
imization, the WLLS estimator is achieved as in (9):

p— P T —
Jwies = E{(AX b)” W (Ax b>} ®) The signal model and the NLOS issue in the mobile

subscriber positioning problem
s T 1T
x= (A WA) AT Wb ©) Due to the presence of obstacles between emitter and
transmitter, received signal is scattered in space and time,
and the LOS component may be strongly degraded or
even completely shadowed. However, receiver gener-
ally uses the most powerful arriving components and
. i~ . ) therefore, in case of shadowing, LOS componentis even-
Expressmn .(10_) exhibits Fh|s matrix for the case 9f TOA tually discarded, and measures are achieved undera NLOS
based positioning. In this case, the set of required dis- 4 gition. This NLOS multipath signal travels a longer
tances dmay be replaced for the set of measurements gisiance than the LOS component to reach the receiver

m;, but in case of TDOA or AOA’ aLLs prqcedure . and consequently the measures are biased as it is shown
should be firstly performed to estimate subscriber posi- ;, (12), whereq is precisely the vector which contains
tion to properly figure out the distances required within .- <o qie to NLOS.

W, and a second step is also required to achieve the re-
fined WLLS position estimation. In case of TDOA, the
weighting matrix in (11) may also be also used as first m=f(x)+n+q
step when a WLLS initialization is preferred. Further-
more, an iterative process may be performed in order to
minimize the function cost in (8) and achieve the maxi-
mum accuracy, and consequently the Best Linear Unbi- These biases are positive random variables. Whed,q
ased Estimator (BLUE) algorithm, but in general a two- it refers to a LOS condition, and whepxny|, it refers
step LS algorithm is adequate. Alternative formulations to a strong NLOS condition, being the latter the case
for the positioning problem are possible, but results in  commented along this paper. Bias nature is associated
terms of accuracy are not important/[22]. to propagation conditions, and in case of TOA based
systems, it may be related directly to the Excess De-
lay through the Power Delay Profile (PDP). Further-

The particular weighting matri¥y depends of the type

of measurements, and it is usually dependent of the dis-
tances between subscriber and BSs due to transforma-
tions performed during formulation of the linear system.

. 12
with q = [q1,¢2,- .-, qz]" (12)

Wroa = [E{eeT}] -1 more, the Greenstein model [9] has been considered to
. 1 L perform this characterization, since it adjusts to several

= ydiag 0T 2037 ago“dg) (10) measurement - based models and incorporates their in-

with d? = ||x — riHQ : Vi=2.3,...,L formation into a small number of parameters to charac-

terize the path-gain/delay spread propagation channel,
and even this model has been incorporated to COST-
231 and eventually to the COST-259 Directional Chan-

2 1 1 nel Model [12] 25].
. 1 2 1
Wipoa = Crpoa = e (11) NLOS environments are modeled using an exponential
i 1 ' 2 distribution for the excess delay for a particular location

as itis shownin (13), and the Greenstein model charac-

terizes the required RMS Delay Spreag, s in (14) as
Whichever would be the positioning technique employed, a random variable and also as a function of the distance
it should be keptin mind that every set of measurements between emitter and receiver, whefés a lognormal
performed by a sensor reduces the positioning to a re- random variable. Hencé&=10log(), is a zero mean
gion shaped in a way related to the nature of the mea- Gaussian variable over the terrain, with a standard devi-
surements, a feasible region. A TOA based position- ationo, that lies between 2 and 6 [dB]. Furthermore, T
ing corresponds to a circular-circular system, whilst a corresponds to the median valuem®f,s at d=1 [km],
hyperbolic-hyperbolic system is characteristic of a TDOA ande is an exponent that lies between 0.5-1.0. It has
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been set to 0.5 for the simulations exhibited in this doc- POSITIONING ERROR - WLLS - 7 BSs
ument. ; - - - - 300
13 250
()= —exp———ju(r)  (19)
1200
Trms — Tldag (14) —a
% 1150
The Greenstein model also includes the gain path g.
This gain is computed with the use of the expression 1100
in (15), where d is the distance in kilometers, i6 the
median value of g at d=1 [km}j is the loss path prop- 50
agation factor which lies between 3 and 4, ani$ a
lognormal random variable. Thereforé=10log) is
a zero mean Gaussian with a standard deviatipbe- 1000 £60 5 500 1000 0
tween 6 and 12 [dB]. And finally, the correlation factor ) ) X (m)

amongX andZ has been set g5=-0.7 [9]. Therefore
E{X.E}= p.oy.0¢.

&= ix (15)

The mean and the standard deviation for the RMS Delay
Spread modeled as in (14) are presented as a function
of distance within (16) and (17) respectively, being m
ando, the mean and standard deviation of the scaled
random variablZ==.In(10)/10. These expressions are
derived in the Annex.

E{Trms} = T1d86m2+03/2 (16)
Orpme = VYT {Trpns} = KT1d° (17)

Since the standard deviation for Delay Spread in (17) in-
creases proportionally to, @¢, it is reasonable to mod-
ify the weights in the WLLS algorithmin (10) as in (18)
to include this information as a mean for NLOS mitiga-
tion. This new version of the WLLS algorithm will be
called NLOS WLLS in this document.

) (18)

In addition, and due the set of TOA measures are biased,
a geometric mitigation will also be tested. This Geo-
metric based mitigation will simply estimate subscriber
position as the centroid of the resulting triangle from the
intersection of the Circular Lines Of Position described
by the measures achieved from the three nearest BS's.

1 1

Tlgdg(l-‘ra) 7y dei(1+8)

Whiros = diag (

Finally, two new algorithms resulting from the incorpo-
ration of Geometric restrictions to our proposed NLOS
WLLS are also evaluated in the next section.

POSITIONING ERROR - NLOS WLLS -7 BSs

1200

1150

1100

-1000

-500 0

x (m)

500 1000

Figure 1: Subscriber Average Positioning Error for a dispersive
NLOS environment, T1=0.4[us] and 7 BS’s. A) Top: original
WLLS algorithm. B) Bottom: NLOS WLLS method with e=1.

Algorithms’ Performance Evaluation

This section includes some simulations provided to eval-
uate several positioning algorithms and their capabili-
ties to mitigate the NLOS condition.

To perform positioning evaluation, a simulation plat-
form compounded for a seven hexagonal cell cluster has
been considered. The control site is located at the co-
ordinate system origin, and a rectangular grid has been
constructed within the control cell to evaluate subscriber
positioning algorithms’ behavior for each point within
the cell.

Arealistic scenario is considered. It assumes that NLOS
condition is present in the seven BS’s. However, NLOS

is assumed to be more moderated for the communica-
tions between the subscriber and the control site. For
this latter BS, the Greenstein model is used as in the
rest of sites with the only difference that the propaga-

tion losses factof is reduced from 3.7 to 2.5. However
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POSITIONING ERROR - GEOMETRICAL- 3 BSs

1200
E 1150
=

1100

-1000 -500 0
x (m)

POS. ERROR - NLOS WLLS + SOFT GEOM.

500 1000

1200
E 1150
-9

1100

-1000

-500

0
x {m)

500 1000

Figure 2: Subscriber Average Positioning Error for a dispersive
NLOS environment. A) Top: Based on Geometrical Restrictions
and 3 BS’s. B) Bottom: 7 BS’s - NLOS WLLS with e=1 and Soft
Geometrical Restrictions.

signal strength information is not relevant for results in
this paper.

Particularly, the required parameters for the Greenstein
model take the following values suitable for the urban
casel[9]: 1=0.4 [us],£=0.5,0,=8.0 [dB],0¢ =2.0 [dB],
andp=-0.75. T, has been setin agree to the GTU COST
259 modell[12, 26] and it may be considered a moderate
dispersive environment.

Figure 1 and Figure 2 exhibit the average positioning
errors for subscribers within a cell with radius R=1000
[m] for several of the methods considered in this study.
Particularly, Figure 1 shows the behavior from the appli-
cation of both the original WLLS method described by
(9) and (10), and the proposed NLOS WLLS algorithm
with modified weights as in (18). Clearly the proposed
method achieves a better NLOS mitigation especially
near the control site, but it also exhibits accuracy degra-

dation in the boundaries.

Figure 2 on the other hand, shows the behavior of the
considered Geometrical Positioning and the positive ben-
efit of adding certain geometrical restrictions to the NLOS
WLLS algorithm. In fact, the Geometrical Positioning
exhibits a better behavior near the cell boundaries when
it is compared with methods in Figure 1. Furthermore,
when this information is added to the NLOS WLLS
method, the new algorithm provides the best mitigation
of them all.

To incorporate the information provided by the geomet-
rical restriction, positioning is performed for the both
basic algorithms; then, when NLOS WLLS procedure
estimates that subscriber is located in the outer 30% por-
tion of the cell, the positioning based on Geometrical
restrictions is used to provide the subscriber position. If
a hard fusion is performed, this latter position is used
instead of the first. On the other hand, a soft decision
implies to take the average of both estimations.

This second technique is the employed in simulation at
the bottom of Figure 2.

Figure 3 compares the CDF's for the positioning error
from various mitigation techniques commented along
this paper. It includes the original WLLS algorithm, the
proposed NLOS WLLS method, the positioning based
on Geometrical restrictions, the Geometric Assisted Lo-
cation Estimator (GALE) approach in [24], the Yi-Long
algorithm in [27], and the two algorithms that introduce
geometrical restrictions to the proposed NLOS WLLS
method. All this algorithms use measures provided by
the seven BS’s with the exception of the algorithm based
on Geometrical restrictions that use just the three near-
est stations. These results confirms NLOS WLLS plus
soft geometrical restrictions algorithm as the best among
the whole set of implemented methods. In fact, this al-
gorithm exhibits average positioning errors below 162[m]
in 70% of the cases, and below 191 [m] in 95% of the
cases. NLOS WLLS plus hard geometrical restrictions
algorithms also makes a good job and registers average
positioning errors below 172 [m] in 70% of the cases
and below 188 [m] in the 95% of the cases. These latter
values are slightly better than those provided by the Ge-
ometric algorithm which exhibits average positioning
errors below 175 [m] in the 70% of the cases and below
CDF FOR SUBSCRIBER POSITIONING ERROR

1 T T T =T

——NLOS WLLS - 7 BS's
~=-NLOS WLLS + SOFT GEOMETRICAL
= NLOS WLLS + HARD GEOMETRICAL
—~ GEOMETRICAL - 3 BS's
—WLLS-7BS's
YI-LONG ALGORITHM - 7 BS's
[|——GALE-7BS's

o
@

o
o)

o
~

o
)

Probability of error below to x axis

=)

— e bl - L 1
50 100 150 200 250
'ERROR [m]'

300

Figure 3: Cumulative Distribution Function for subscriber p osi-
tioning error and different methods.
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188[m] in the95%of thecaseslthoughagoodportion
of its dataregistersup to 25 [m] of additionalerror. In
addition,the original NLOS WLLS algorithmachieves
anaveragepositioningerrorbelow162[m] in the 70%
of thecases antielow208[m] in the 95%of thecases,
whilst thetraditional WLLS algorithmreaches aaver-
agepositioningerrorbelow179[m] for the 70%of the
casesand below 215 [m] for the 95% of the cases.It
means thaNLOS WLLS plussoft Geometricatestric-
tionsprovidesanadditionalmitigationof aroundof 15-
45[m] whenit is comparedvith thetraditional WLLS
methodin this moderatedispersiveenvironment.Sim-
ulations performedwithin a more dispersiveenviron-
menthaveshownaspositioningdegradegor all meth-
ods but also asthesegainsenhance.In addition, Yi-
Longapproacltj27] andparticularlyGALE method24]
exhibiteda poorperformanceavithin our NLOS simula-
tion scenerywhereGaussiameasurememoisehasnot
beenincluded. In fact, our bestapproactprovidesan
additionalmitigation of around35-70[m]respecto Yi-
Long approactandaround50-70[m]respecto GALE.
Thesewo algorithmsworkedevenworsethantheposi-
tioningbasedn asimpleGeometricatestrictionin our
simulations.

Summary

Non Line Of Sight(NLOS) conditionstronglydegrades
the performanceof subscribermpositioningin wireless
communicatiorsystemsRobusttraditionalalgorithms,

originally developedo useLine Of Sight(LOS) signal,

fail in currentdispersivescenarios.Severalmitigation

technique$avebeenproposedSomeof themconsider
the weightingof the availablemeasureén orderto get

the betterof eachone. Othersusegeometricakestric-

tionsto improveaccuracyandanothergroupincludes
somelateralinformationto properlyevaluatethe qual-

ity of themeasurandhenceincorporatehis datain the

positioningprocess.

Themostrelevantapproachefor positioningandNLOS
mitigationhavebeensimulatedwithin realisticenviron-
mentsalongthis documentor smallsizedcells. A new
mitigation algorithmthat considershoth the weighting
of measuresnd soft geometricakestrictionshasbeen
proposedor positioningbasedn TOA. This newalgo-
rithm makesa betterwork thanthoseprovidedby the
literatureand usedas reference. In fact, this new al-
gorithmachievesa positioningerrorbelow 162 [m] for
the 70% of the casesand below 191[m] for the 95%
of the caseswithin a moderatelispersiveenvironment
(T1=0.4[us]). Thesevaluesareatleast10%lowerthan
thoseprovidedby thereferenc@VLLS algorithm.There-
foreaveragepositioningerrordecreaseletweerl5[m]
and45 [m] for this new method,around35-70[m] in
comparisorwith Yi-Long approachandaround50-70
[m] whenit is comparedvith GALE. However,163[m]
is still high whenit is comparedwith the 100 [m] re-
quiredby the E911regulationandthereforenewmeth-
ods thatbetterexploit the systemcharacteristics ttake

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

9]

(10]

(11]

advantage of its dynamics and signal diversity will be
the object of further research.
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Annex. Derivation of the first two moments for the
RMS Delay Spread defined as the Greenstein Model
The derivation of these moments is eased by the fact
that¢ in (14) is lognormal and therefore, it is related to
= as it is shown in (19), and admits to be expressed in
relation to a new scaled variabtewith mean m and
standard deviation, as it is shown in (20):

6 — = In 10/10 _ e? (19)
. _ Inl0=
with z = 5572

m, = E {z} = 210,

0. =/var{z} = 20, (20)

The computation of may be related to the characteris-
tic function®,(s)=E{e**} as follows:

E{t =E{e*} =0.(s=1)
s.mz+52.03/2 — emz+crz/2 (21)

s=1

= €

Similarly, the second moment may be performed as it is
shown in (22):

E{¢}=E{e*} =0, (s=2)
— es.mz+sza§/2 — 62m2+205 (22)
s=2

And the variance may be achieved as in (23):

var {¢} = E {€*} — B*{¢}

— e2mz+0'§ (605 -1

(23)

Furthermore, the statistics for the RMS delay spread are
finally derived within (24) and (25):

E{Tyms} = Tydee™=1o:/2 (24)

O = E{Trms} Vo2 — 1 = kTyd* (25)



