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The study of spatial variability of specific quantities characterizing the unsaturated soil is
very important for the evaluation of polluting phenomena. Geostatistics is a useful tool
for estimating the spatial variability of the considered parameters. The aim of this study
is to improve the understanding of the spatial variability of the fractal dimension of water
retention curves, showing the behaviour of this parameter in the site examined and par-
ticularly at the points where measures were not performed. The assessment of the fractal
dimension was calculated by the analysis of scaling obtained from some fractal models and
a comparison among the correspondent results was performed.
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Resumen

El estudio de la variabilidad espacial de específicas magnitudes que caracterizan el suelo
no saturado es muy importante para la evaluación de los fenómenos de contaminaciòn. La
Geoestadística es una herramienta útil para la estimación de la variabilidad espacial de los
parámetros considerados. El objetivo de este estudio es mejorara la comprensión de la
variabilidad espacial de la dimensión fractal en las curvas de retención de agua, mostrando
de esta manera el comportamiento de este parámetro en los puntos muestreados y de manera
particular en los puntos donde no existen muestras. La evaluación de la dimensión fractal
se calculó por el análisis de escalamiento obtenido a partir de algunos modelos fractales y
la posterior comparación entre los resultados correspondientes.

Palabras Clave.Curvas de retención del agua, Geoestadística, Dimensión Fractal, Análisis
de escalamiento.

Introduction

By using fractal geometry to characterise pore space,
groundwater behaviour can be effectively related to the
water and structural properties in the soil. The avail-
able field and laboratory methods that are able to define
correctly the properties of unsaturated soil are very ex-
pensive and time-consuming. In the literature there are
many models that can interpret various phenomena by
fractal geometry characterising the porous media, such
as water retention curves (WRC) and hydraulic conduc-
tivity [1]. These models were the outcome of theoret-
ical and experimental studies designed to describe soil
fractal structure in terms of soil particle size distribution
[2], solid aggregate typology distribution [3, 4], pore-
solid interface area [5], pore-phase fractal mass [6, 7]
and solid-phase fractal mass [8–10]. Essentially, the ba-
sic fractal scheme used in these models to describe soil

fractal scaling behaviour in terms of either the solid or
the pore phase is the Menger sponge [5, 11, 12]. These
models are characterized by a single geometric param-
eter that represents a scale invariant, namely, the frac-
tal dimension (D

f
) [11]. Different studies [2, 5, 8, 9,

11, 12] show that in the porous media the scaling law
represents a connection among water contained, matrix
potential and the porous medium. Therefore, the valu-
ation of the fractal dimension is very important on the
field scale, because this value is correlated to the scale
process of WRC at the single point of measure. In fact,
it could be of great interest to have not only information
on WRC in each location where the sampling was car-
ried out, but, obviously, also at other points where this
measure was not performed. For this purpose, the geo-
statistic [13, 14] offers a group of methods to describe
quantitatively the spatial continuity that is an essential
feature of many natural phenomena [15, 16]. Therefore
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this approach allows the fractal dimension to be consid-
ered as a random function and to be represented on the
field scale of the measures. The fractal dimension dis-
tribution is performed beginning from the knowledge of
the WRC in a limited series of points on the specific area
investigated. That allows useful information to be ob-
tained about the fractal dimension values also at points
where the measurements are lacking. The comparison
among the results obtained in this way by the fractal
models permits interesting considerations on the avail-
ability of these for the retention curve description.

Materials and Methods

Description of investigation area

The site where the measurements took place is an exper-
imental field of the Turbolo basin in Calabria, Italy (Fig.
1), which furnishes the data set for the spatial charac-
terisation of the fractal dimension through geostatistical
analysis. This site covers an area of 2800 m2 (70 x 40
metres) and a specific instrumentation was used for con-
tinuous monitoring, at various locations and at different
depths. To characterize the unsaturated soil, an experi-
mental field was selected with a rectangular surface of
800 m2 (40 x 20 metres), sloping lengthwise at a gradi-
ent of about 6%. Metallic cylinders 0.05 metres in di-
ameter and 0.051 metres high, with a sharp bottom rim
for better penetration, were pressed vertically into the
undisturbed soil to take a total of 30 cores. Fig. 1 shows
the locations where the undisturbed soil cores were ex-
tracted. These samples were analysed in the laboratory,
where the particle size distribution, the bulk density, the
saturated hydraulic conductivity and the water content
at different pressure heads were determined to plot the
WRC, by using the conventional Richards apparatus.

Fractal models for WRC definition

The use of WRC fractal models and the spatial interpo-
lation methods allows indications to be obtained about

Figure 1: Turbolo River and experimental field.

the soil spatial variability i. e. of the characteristic soil
parameters, specifically of theD

f
. The literature shows

that fractal geometry has been successfully used to in-
terpret water retention and the variability of hydraulic
conductivity in soils with different textural structures
[4, 17, 18]. Among the existing fractal models and ac-
cording to Perfect et al. [19] the WRC are commonly
grouped in three classes namely the Tyler and Wheatcraft
[20] (TW), the Rieu and Sposito [8, 9] (RS) and the Per-
rier et al. [22] pore solid fractal (PSF) models.

The model of Tyler and Wheatcraft [20] is based on a
two-dimensional Sierpiński carpet stretched to form a
capillary bundle, and is easily extensible to three dimen-
sions. This model is applied within the limit of infinite
iterations when the porosity is unity. The analytic ex-
pression of TW model is the following:

θ (h) = θ
S

(

h

hmin

)

Df−3

(1)

whereθ
S

is the saturated water content,h is the generic
water potential,h

min
is the water potential commonly

named air-entry value [21] andD
f

is the fractal dimen-
sion.

The Rieu and Sposito [8, 9] model treats the WRC as a
partially fragmented porous medium with porosity less
than or equal to 1. This model can be represented by the
following relation:

θ (h) = θ
S
− 1 +

(

h

hmin

)

Df−3

(2)

where the parameters assume the same mean as shown
above.

The model of Perrier et al. [22], known as the pore-
solid fractal (PSF) model, represents a generalization
of the solid and pore mass fractal models. Similarly
to the TW and RS models, the PSF model characterises
both the solid and pore phases of the porous media. It
also exhibits self-similarity to a degree, in the sense that
where local structure occurs, it is seen to be similar to
the whole structure [12].

According to Bird et al. [12], the PSF model can be
represented by the following relation:

θ (h) = (θ
S
−A)−A

(

h

hmin

)

Df−3

(3)

In equation (3) the parameterA is defined as [23]:

A =
p

p+ s
(4)

wherep and s are the pore and solid phase fractions
at each scale. This parameter is variable between the
saturated water content (θ

S
) and 1 (i.e.θ

S
≤ A ≤ 1).
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Evaluating the (1), (2) and (3) expressions, the fractal 
dimension can be estimated by analysing the log-log 
plots of θ∗ versus (h

min
/h), in which logθ∗ is defined 

as follows:

log θ
∗
= log

θ

θs
; log θ

∗
= log (θ + 1− θ

s
) ;

log θ
∗
= log

θ+A−θs

A

(5)

respectively for the TW, RS and PSF models. More pre-
cisely,D

f
is calculated in the scaling range that is de-

limited by lowerlog (h/h
min

)
inf

and upper
log (h/h

min
)
sup

values, where the determination coef-
ficient R2 of the regression curve is maximum. Com-
monly for each WRC, it is possible to identify two scal-
ing ranges: one lower for very low water content and
the other upper for larger water contents [5, 11, 24, 25].

Assessment of the fractal dimension

The individualization of fractal dimension distribution
can be carried out considering the scaling procedure de-
fined in Fallico et al. [25], analysing the log-log plots of
θ
∗ versus (h

min
/h), in which logθ∗ is defined for each

fractal model by relations (5).

Specifically, according to experimental studies by Toledo
et al. [5], Millàn and Gonzàles-Posada [24] and Fallico
et al. [25], it is possible to define two scaling ranges of
the WRC, one for the larger and the other for the smaller
water contents. In this context the fractal dimension can
be defined, for each of the two scaling ranges, as the
slope of the straight regression line interpolating the ex-
perimental WRC points with the highest coefficient of
determination R2 [26]. This procedure allows the scal-
ing range to be determined in which the fractal dimen-
sion is an invariant of scale. The WRC models con-
sidered in the present study are the three represented by
the relationships (1), (2) and (3) above shown. Since the
methodology of the fractal analysis and also the results
are those reported in Fallico et al. [25], where all the
setting values are defined, the reader should refer to this
study for all details. Altogether, ten data sets of the frac-
tal dimensions were considered, specifically, five sam-
ples are related to the lower range (I) and the others rep-
resent the upper range (II). These values include also the
three relative to the PSF model, with A=0.30, A=0.45
and A=0.60, that are representative of the examined un-
saturated soil [25]. This was carried out for each loca-
tion. By means of a geostatistics analysis performed for
each model data set to individualise the spatial distri-
bution of the fractal dimension, in the present study we
checked the reliability of the models and defined that
showing the best fitting of the measured values. This
latter approach can be considered an extention of the in-
vestigation carried out previously by Fallico et al. [25].

Geostatical analysis

The theoretical basis of the geostatistics was described
by several authors [16, 27]. This procedure represents a
class of statistical techniques developed to analyse and
predict values of a variable distributed in space or time.
Generally, geostatistics is accepted as a science to study
the random and structural character or spatial autocor-
relation [28] of natural phenomena with the support of
Regionalized Variables Theory and variograms [13, 16].

The exploratory data analysis (EDA) is the preliminary
phase of geostatistical analysis. This procedure identi-
fies the principal parameters of descriptive statistic per-
forming a graphical description of the data set (Box-
plot, Q-Q plot etc.). Then the EDA represents a good
method to locate anomalous values (outliers) [29] and to
verify the existence of outliers by statistics tests [30]. In
the geostatistics a normal and/or lognormal distribution
of the variable understudy is desirable when the hypoth-
esis of stationarity occurs [31] and different hypothesis
tests can be considered [32, 33] to effect the verification
of this hypothesis. In geostatistics, the modeling of spa-
tial data is accomplished through the calculation of the
experimental variogram, showing the increase in vari-
ability between sample locations and a generic point.
The variogram describes the spatial relationship between
the sample values as a function that relates the variance
(γ) to the distance of sample separations (d) usually
called lag. The variogram equation is given as [13]:

γ (d) =
1

2N (d)

N(d)
∑

i=1

[z (u
i
)− z (u

i
+ d)]

2 (6)

whereN(d) is the number of sample pairs [13, 34],
γ(d) is the semivariance,z(u

i
) andz(u

i
+ d) are the

observation values of the studied variable measured at
point u

i
and at a point separated byd vector, respec-

tively. To verify the presence of eventual anisotropy in
the data, often the variogram surface [16] and/or the di-
rectional variograms [14, 15] are usually displayed. The
anisotropy of the variogram surface (these values tend to
be more similar in one or more preferred directions than
in others) reveals a covariance structure that is usually
related to the orientation of natural phenomena acting
in the studied area; the directional variograms reveal
the changes in the variogram parameters as the direc-
tion changes when the phenomenon is anisotropic. The
experimental variogram is commonly fitted by using a
mathematical equation [15, 16] whose main parameters
are sill (C) or partial sill (C1), range (A) and nugget
(C0). The variogram model is a curved line through
the experimental variogram points. Afterwards, the in-
terpolation phase is commonly performed to obtain the
spatial distribution of the investigated parameter accord-
ing to the purpose of the geostatistical methodology. In
the field of Earth Sciences this phase is named krig-
ing, which is one of the most commonly used estimation
techniques that uses variogram model parameters. It is a
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Fractal Mi n. Max. Mean Median Stand. Stand. Var. Kurt. Skew.
Model Error Dev.
TW(I) 2.8943 2.9779 2.9509 2.9530 3.30·10−3 1.80·10−2 3.30·10−4 3.5408 -1.5992
RS(I) 2.9630 2.9931 2.9836 2.9842 1.18·10−3 6.50·10−3 4.22·10−5 3.2441 -1.5044

PSF0.30(I) 2.8468 2.9731 2.9327 2.9323 4.81·10−3 2.59·10−2 6.72·10−4 2.9248 -1.1723
PSF0.45(I) 2.8964 2.9834 2.9583 2.9603 3.32·10−3 1.82·10−2 3.31·10−4 4.3097 -1.7475
PSF0.60(I) 2.9305 2.9880 2.9706 2.9719 2.23·10−3 1.22·10−2 1.49·10−4 3.7734 -1.6387

TW(II) 2.7423 2.8362 2.7782 2.7715 5.06·10−3 2.63·10−2 6.93·10−4 -0.1022 0.8807
RS(II) 2.9388 2.9616 2.9476 2.9468 9.22·10−4 4.79·10−3 2.29·10−5 1.4767 0.8048

PSF0.30(II) 2.1094 2.6960 2.5322 2.5688 2.64·10−2 1.37·10-1 1.89·10−2 1.9191 -1.2707
PSF0.45(II) 2.8063 2.8757 2.8342 2.8294 3.30·10−3 1.71·10−2 2.94·10−4 -0.1562 0.4601
PSF0.60(II) 2.8806 2.9229 2.8961 2.8952 1.83·10−3 9.53·10−3 9.08·10−5 1.001 0.6895

Table 1: Parameters of EDA (minimum, maximum, mean, median, standard error, standard deviation, variance, kurtosis, skewness) of
sets derived from theD

f
values calculated for the first (I) and second (II) range and for each considered fractal model.

method of interpolation which predicts unknown values
from data observed at known locations and it minimizes
the variance of the chosen linear combination of the data
subject to the constraint that the estimator must be unbi-
ased. In the present paper, the ordinary kriging [15, 16]
is chosen to interpolate the punctual data of examinated
variable. Assuming the intrinsic hypothesis, the linear
system of ordinary kriging equations can be expressed
as:















N

∑

i=1

λ
i
γ (u

i
, u

j
) + µ = γ (u

i
, u)

n
∑

i=1

λ
i
= 1

(7)

whereλ
i

is an unknown weight for the measured value
at thei location,µ is Lagrange multiplier,γ (u

i
, u

j
) is

the value of variogram corresponding to a vector with
origin in u

i
and extremityu

j
and γ (u

i
, u) represent

the variogram betweenu
i

andu (unsampled location).
Moreover, to estimate the values at new locations, a sta-
tistical spatial prediction technique, producing a mea-
sure of the uncertainty associated with a given model,
was utilized. In geostatistics, this is often referred to
as the prediction variance, i.e. the estimated variance
of the prediction error. The ordinary kriging variance is
defined as [14]:

σ
2
(u) =

n

∑

i=1

λ
i
γ (u

i
, u)− µ (8)

This parameter depends on the data configuration but
does not depend on the data values. To check the op-
timal adaptation of the variogram model (or theoreti-
cal) with the experimental variogram, a cross-validation
was applied [35]. This procedure consists in the appli-
cation of the spatial model selected to predict a value
in each sampling point. The cross-validation compares
the predicted and observed data; the difference between
these values is called error of estimate. Two diagnostics
statistics are performed to verify the reliability of the

model. The mean deviation or mean error (ME) is given
by the following expression:

ME =
1

N

N

∑

i=1

[z
∗

(u
i
)− z (u

i
)] (9)

wherez∗(u
i
) is the measured value at thei location and

z(u
i
) the estimated value. The variance of standardised

error (VSE) can be expressed as:

V SE =
1

N

N

∑

i=1

[z
∗
(u

i
)− z (u

i
)]
2

σ2 (u
i
)

(10)

in which σ
2
(u

i
) is the kriging variance. TheVSE pa-

rameter corresponds to the relationship between the ex-
perimental and theoretical variance. If the variogram
model is careful then the mean error should be ideally
0 because the kriging is unbiased, while theVSE value
should be 1.

Results y Discussion

In Table 1 the parameters of EDA, comprising theD
f

values calculated for the first (I) and second (II) range
of scaling, are summarised for all the considered fractal
models.

These results show that the RS model, for high (I) and
low (II) water contents, has a medium value of frac-
tal dimension equal to 2.9836 and 2.9476, respectively.
Then for this fractal model the variable has the highest
values. The averages of the data sets for high water con-
tents are between 2.9327 and 2.9836, while for low wa-
ter contents the average values are included in a larger
range, that is, between 2.5322 and 2.9476. This situa-
tion leads to a first consideration of a consistent hetero-
geneity of fractal dimension values for the second range
of scaling, even if the number of the experimental points
for this range is very limited. Both for high and low wa-
ter contents, the RS model shows the smallest values of
variance that are 4.22·10−5 and 2.29·10−5, respectively,
whereas the PSF model withA=0.30 has the largest val-
ues, 6.72·10−4 and 1.89·10−2.
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Test
TW (I) RS (I) PSF0.30 (I) PSF0.45 (I) PSF0.60 (I)

Norm. Lognorm. Norm. Lognorm. Norm. Lognorm. Norm. Lognorm. Norm. Lognorm.
K-S 0.1596 0.1598 0.1403 0.1382 0.1194 0.1227 0.1572 0.1561 0.1483 0.1467
A-D 1.1204 1.1230 0.9560 0.9416 0.4776 0.4788 1.1417 1.1424 1.0607 1.0534
χ
2 1.5528 1.5531 1.6453 1.6474 0.16834 0.1800 0.8223 0.8198 0.8221 0.8224

Test
TW (II) RS (II) PSF0.30 (II) PSF0.45 (II) PSF0.60 (II)

Norm. Lognorm. Norm. Lognorm. Norm. Lognorm. Norm. Lognorm. Norm. Lognorm.
K-S 0.1596 0.1598 0.1403 0.1382 0.1194 0.1227 0.1572 0.1561 0.1483 0.1467
A-D 1.1204 1.1230 0.9560 0.9416 0.4776 0.4788 1.1417 1.1424 1.0607 1.0534
χ
2 1.5528 1.5531 1.6453 1.6474 0.1683 0.1800 0.8223 0.8198 0.8221 0.8224

Table 2: Numerical results of the K-S, A-D andχ2 tests; (I) and (II) are the two scaling ranges of the high and low water contents,
respectively.

The kurtosis coefficient is always positive for all the
fractal models, therefore the data sets have a leptokur-
tic distribution. Only the TW and PSF withA=0.45 for
low water contents differ because the curtosis coeffi-
cient is negative. For all the fractal models with high
water contents and for the PSF model withA=0.30 and
for low water contents, the skewness negative indicates
that the mean is to the left of the median of the distri-
butions. For the others fractal models this parameter
is positive. To verify the assumption around the nor-
mal and/or lognormal distribution of the data sets, the
Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D)
and Chi-Square (χ2) hypothesis tests were used. Table
2 gives the results of these tests, for which the signifi-
cance levelα is 0.05. It can be verified that the statisti-
cal value always results smaller than the critical values
that are 0.242, 2.502 and 7.815 for K-S, A-D andχ

2

tests, respectively. Then, all the data sets ofD
f

asso-
ciated with each fractal model can be well interpreted
with normal and log-normal distributions.

To check the presence of anomalous values in the data
sets, the Dixon test was used. The statistic experimental
parameter (Q

exp
) is compared to a critical value (Q

crit
)

that is possible to find in specific tables [30] and for
different values of the significance level (α). Table 3
gives the outliers values with respective locations and
the results of the Dixon test for each fractal model and
for high and low water contents.

Fractal
Location Outlier Qexp

Qcrit

Model (α=0.1)

TW(I)
2 2.89426

0.4438 0.285
26 2.90098

RS(I)
2 2.96688

0.4310 0.285
26 2.96295

PSF0.30(I) 2 2.84677 0.3887 0.218

PSF0.45(I)
2 2.9140

0.4937 0.285
26 2.89643

PSF0.60(I)
2 2.94012

0.4634 0.285
26 2.93053

RS(II) 2 2.9616 0.340 0.224
PSF0.30(II) 26 2.10942 0.3746 0.224
PSF0.45(II) 2 2.8757 0.2282 0.224
PSF0.60(II) 2 2.92292 0.3039 0.224

Table 3: Anomalous values (outliers) for each fractal model and
results of the Dixon test.

Assuming a significance levelα of 0.1, for all the data
sets and for all the hypothesized outliers, the Q

crit
pa-

rameter is smaller than the Q
exp

value. Then, unlike
the PSF model withA=0.30, each fractal model for the
first range of scaling has anomalous values at the loca-
tions 2 and 26. These outliers are 2.89426 and 2.90098
for the TW model, 2.96688 and 2.96295 for the RS
model, 2.84677 for the PSF model withA=0.30 at the
location 2, 2.9140 and 2.89643 for the PSF model with
A=0.45, 2.94012 and 2.93053 for the for the PSF model
with A=0.60. For the second range of scaling, in the
TW model there are no outliers. The RS, the PSF with
A=0.45 and the PSF withA=0.60 models show outliers
at location 2 that are 2.9616, 2.8757 and 2.92292, re-
spectively. The PSF model with A=0.30 has an anoma-
lous value of fractal dimension of 2.10942 at location
26. After a preliminary statistical study of the data sets,
the results of the structural analysis are shown, which
is based on the study of possible anisotropies, the con-
struction of the experimental variogram and the relative
model. The study of the directional variograms and of
the variogram maps allows theD

f
distribution to be

considered as an isotropic phenomenon, for each frac-
tal model and for the first and second range of scaling.
For example, Fig. 2 displays the variogram map and the
directional variograms for the RS fractal model and the
first range of scaling. Analyzing the variogram map, it
can be seen that the fractal dimension variable is a phe-
nomenon distributed uniformly in any direction.

This circumstance was verified for each fractal model.
The directional variograms was identified in East, North-
East, North and North-West directions by an angular
tolerance of 22.5◦. Examining these variograms, it can
be affirmed that they have a similar behaviour in each
direction and do not reveal the changes of variogram
parameters, which are: sill, range and nugget. In ac-
cordance with these results, the fractal dimension is an
isotropic event and omnidirectional variograms were used
to effect the geostatistical analysis. Table 4 shows the
quantities that define the structural analysis for high and
low water contents and for each fractal model, which
are: lag, lag number, the variogram model and the re-
spective parameters.

The lag is 3 metres for fractal models with high water
contents, whereas for low water contents it assumes a
value equal to 2.9 metres and 2.8 metres for TW and the
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Figure 2: Variogram map (left) and directional variograms (ri ght) of the fractal dimension variable for the RS fractal model and for high
water contents. The right figure also shows the omnidirectional variogram.

Fractal Lag Lags Variogram A C1 C C0

model (m) num. model (m) (m2) (m2) (m2)
TW(I) 3 8 Spherical 11 4.10·10−5 1.27·10−4 8.60·10−5

RS(I) 3 8 Spherical 13 1.14·10−5 1.74·10−5 6.00·10−6

PSF0.30(I) 3 8 Spherical 14.5 2.00·10−4 3.96·10−4 1.96·10−4

PSF0.45(I) 3 8 Spherical 15 6.80·10−5 1.22·10−4 5.40·10−5

PSF0.60(I) 3 8 Spherical 14.5 3.36·10−5 5.78·10−5 2.42·10−5

TW(II) 2.9 8 Spherical 14 5.20·10−4 6.70·10−4 1.50·10−4

RS(II) 2.8 8 Spherical 12 8.70·10−6 1.72·10−5 8.50·10−6

PSF0.30(II) 2.8 8 Spherical 13 8.30·10−3 1.31·10−2 4.80·10−3

PSF0.45(II) 2.8 8 Spherical 12 1.55·10−4 2.69·10−4 1.14·10−4

PSF0.60(II) 2.8 8 Spherical 12 4.90·10−5 7.70·10−5 2.80·10−5

Table 4: Results of structural analysis for each data set of fractal dimension variable.

Fractal
ME VSE

Fractal
ME VSE

Model Model
TW(I) 2.53·10−4 1.0089 TW(II) -1.99·10−4 1.0048
RS(I) 4.7·10−5 1.0056 RS(II) -1.31·10−4 1.0018

PSF0.30(I) 7.22·10−4 1.0035 PSF0.30(II) -2.1·10−4 1.0166
PSF0.45(I) 2.80·10−4 1.0042 PSF0.45(II) -2.95·10−4 1.0084
PSF0.60(I) 1.69·10−4 1.0008 PSF0.60(II) -2.0·10−4 1.0171

Table 5: Results of cross-validation. The table gives the ME and VSE values for each data set.

others models, respectively. The lags number is 8 for
all the data sets, then the experimental variogram fur-
nishes a spatial correlation of measured points around
22.4 and 24 metres. The assumed type of model is the
result of the cross-validation that will be treated later.
The selected spherical models are characterized by a
range value between 11 metres and 15 metres for the
first range of scaling. For the second range this param-
eter varies between 12 metres and 14 metres. The sill
varies between 1.22·10−4 and 1.74·10−5 for the first
range of scaling, whereas for the other condition it as-
sumes 1.31·10−2 and 7.7·10−5. The nugget is included
between 1.96·10−4 and 6·10−6 for fractal models with
high water contents; this parameter varies between 4.8·10−3

and 8.5·10−6 for low water contents.

The experimental variograms and the respective models
with the equations are shown in Figure 3. Afterwards,

Table 5 gives the results of cross-validation. It shows
that for each data set of fractal dimension theME and
VSE values are very near to 0 and 1, respectively.

Then the selected variogram models represent good func-
tions that interpolate the experimental variograms. The
results are reported for all fractal models with high and
low water contents.

To represent the spatial variability of fractal dimension
an interpolation of the available data by ordinary kriging
was performed to estimate the values where measures
are not available. Selecting an opportune grid (0.25 x
0.25 metres) for the examined surface, the interpolation
in each node of this was carried out to obtain the vari-
able values in each of these nodes. The maps of the
fractal dimension variable for each fractal model with
high and low water contents are shown in Figs. 4 and 5
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Figure 3: Experimental variograms and models for TW, RS and PSFwith A=0.60 fractal models for high and low water contents. These
plots also show the equations of spherical variogram models for each data set of fractal dimension variable.

respectively.

D
f

assumes values between 2.9314 and 2.9779 for high
water contents in the TW model; it has low values in
two zones of the considered area and, precisely, in the
South-West and North-West parts. The highest values,
between 2.96 and 2.9779, characterise all the central
area and a small zone to the South-East. TheD

f
vari-

able varies between 2.7423 and 2.8362 for the same
fractal model and for low water contents; in this case all
the area has very low values (between 2.7423 and 2.78)
except for the North zone and a small portion located in
the South-West of this area.

Examining the RS fractal model, theD
f

variable has
values between 2.9760 and 2.9931 and between 2.9388
and 2.9538 for high and low water contents respectively;
in the first case, it has the lowest values in the North
part of the site and in a small South-West zone . The
greatest values ofD

f
variable (2.987÷2.99), as for the

TW model, were estimated in the central and South-
East zones. In the second case, the examined area shows
the highest values in the North and South-East portions,
whereas the remaining area is characterised by very low
values.

For the PSF fractal model withA=0.30 and for the first
range of scaling, fractal dimension assumes values be-
tween 2.8959 and 2.9731; the smaller values are in the
South-West and North-East parts of the site whereas
the greatest values are in the South-East and the cen-
tral zones. Considering the second range of scaling, the
D

f
variable has values between 2.3291 and 2.6960; ob-

serving the map, in this caseD
f

assumes the lowest val-
ues (between 2.3329 and 2.45) in South-West and cen-
tral parts of the site; in the remaining area there are the
greater values.

For the PSF withA=0.45 model theD
f

variable has
values between 2.9394 and 2.9834 and between 2.8063
and 2.8599 for the high and low water contents respec-
tively. In the first case it is possible to see the presence
of very low values in the North part and in a South-West
small area; the highest values are in the central and in
the South-East zones. The fractal dimension has very
high values in the North-West and South-East zones for
low water contents; the smaller values are in the South-
West area and in a small zone of the experimental site.

Finally, for the PSF withA=0.60 model,D
f

has values
between 2.9572 and 2.9880 for the high water contents;
it has low values in two zones of the study area and,



De Bartolo et al. Av. Cienc. Ing. (Quito), 2015, Vol. 7, No. 2, Pags. C12-C22

Figure 4: Maps of theD
f
variable for high water contents and for the TW, RS and PSF withA=0.60 fractal models.

Figure 5: Maps of theD
f
variable for low water contents and for the TW, RS and PSF withA=0.60 fractal models.

precisely, in the Northern and South-West parts. The
highest values characterize the central and South-East
zones. For the same fractal model and for low water
contents,D

f
varies between 2.8806 and 2.9101; in this

case the experimental site has very low values in the
central and South-West areas whereas the highest values
are in the South-East and North-West parts.

After spatial interpolation by ordinary kriging, it is es-
sential to evaluate the error and the accuracy of pre-
diction (evaluation of ordinary kriging variance) related
to each location and for all the fractal models. Fig. 6
gives these results by the normalized error and variance
for the locations 1, 11, 22, 28 and for high water con-
tents. They show that for all the locations (except n.
28) the RS model has the smallest error values whereas
the highest errors characterize the TW and PSF with

A=0.30 fractal models. In some locations, the fractal
dimension variable was overestimated with respect to
locally calculated values. Fig. 6 shows this compari-
son for each model and for some among the most sig-
nificant locations.Specifically, at location 22 the fractal
dimension was overestimated for the TW and RS mod-
els, whereas this variable was underestimated for all the
PSF models. Finally, examining location 28, the PSF
model withA=0.30 is the only model that has a larger
estimate value with respect to the calculated values.

Fig. 7 gives the same results for locations 2, 11, 26,
29 and for low water contents. The results of the vari-
ance values show a very explicit condition: in the RS
fractal model the accuracy of prediction proves the best,
whereas the PSF model withA=0.30 appears the least
reliable. In the same Fig. 7, the graph relative to loca-
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Figure 6: The errors and the kriging variance normalized values for some among the most significant locations (1, 11, 22, 28) and for each
fractal model. The results are for high water contents. The clear gray histograms represent overestimation of the fractal dimension; the
dark gray histograms indicate an underestimation of the variable. The variance values are represented by white histograms.

Figure 7: The errors and the kriging variance normalized values for some among the most significant locations (2, 11, 26, 29) and for each
fractal model. The results are for low water contents. The clear gray histograms represents an overestimation of the fractal dimension; the
dark gray histograms indicate the underestimation of the variable. The variance values are represented by white histograms.
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tion 2, the results concern the TW and PSF withA=0.30
fractal models, respectively, because for the other mod-
els at the same location the fractal dimension proves to
be an outlier value. For the same reason, at location 26
analogous considerations were made for the PSF with
A=0.30 model. Examining these results it is possible to
see that the RS model shows the lower error value for all
the locations whereas the highest errors concern above
all the PSF model withA=0.30, except for locations 22,
23, 26 for which the TW fractal model is the least reli-
able.

These results show that there are important differences
between high and low water contents. Examining all the
fractal models for the first case, at each location, there
is often a similar condition of overestimation and/or un-
derestimation of the fractal dimension. This condition
does not exist for the low water contents, because there
are locations in which the estimate value is greater than
the measured value for a single fractal model whereas
for the others it is contemporarily smaller.

Conclusions

The application of geostatistical methods to the frac-
tal dimension, obtained with the scaling of some fractal
models to predict WRC, permitted quantification of the
value of this variable on all the area of the experimen-
tal site without the measure. The results can be used in
various applications, particulary in flow predictions and
transport processes on the field scale. Each WRC can
be divided into two scaling ranges of scaling, lower and
upper, respectively for low and high water contents [25].
There were ten data sets used, five samples are related
to the low scaling range and the others to the high scal-
ing range. These data sets can be described with a nor-
mal and log-normal distribution. Geostatistical analysis
was applied to each sample to evaluate the behavior of
fractal dimension in an experimental site of the Turbolo
basin (a tributary of the Crati River) located in Calabria,
Italy.

The spatial distribution of the fractal dimension on this
area was obtained with ordinary kriging that is an exact
interpolation technique, which assumes the local sta-
tionary of the mean. A strong equality of the spatial
distribution of the variable was verified for high water
contents, because the maps show many similarities be-
tween all the fractal models, whereas there is a great
inequality for low water contents, because the maps of
the models present different features. This difference
depends on the number of experimental points regard-
ing the low water content range of scaling that proves to
be very limited.

The RS model shows the best fitting of the measured
values for the first and second range of cut-off scaling,
because it often presents the smallest error value and the
kriging variance related assumes lesser values at many
locations. Compared to the previous study of Fallico

et al. [25], this work shows a more detailed geosta-
tistical analysis performing the evaluation of possible
anisotropies. However, the results of this study confirm
the conclusions of the previous work [25], because the
RS proves to be the best fractal model to interpret the
true values for both high and low water contents.
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