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Flujo de fluido MHD en medio poroso de permeabilidad 
exponencial resuelto mediante el método modificado de 
perturbación homotópica

Abstract
In this work, we study and analyze the fully developed flow of a magnetorheological 
fluid through an inhomogeneous porous medium of variable permeability under the 
influence of an external, uniform, and transversal magnetic field. Permeability is modelled 
as an exponential distribution function of the transverse direction. The Darcy-Lapwood-
Brinkman-Lorentz equation, which governs this type of fluid flow in porous media, is 
solved under the no-slip boundary conditions by the Modified Homotopy Perturbation 
Method. Solutions, and results, are validated using the Numerical Shooting Method. 
Results are analyzed to better understand the influence of fluid and flow parameters on 
the velocity, volumetric flow rate, and wall shear stress. Analysis in this work shows that 
the two most important parameters are the Darcy number and the viscosity ratio. Low 
values of these parameters undermine Brinkman’s viscous shear effects.

Keywords: Brinkman regime; Hartmann magnetic number; exponential permeability; 
magnetorheological fluid.

Resumen
En este artículo se estudia y analiza el flujo completamente desarrollado de un fluido 
magneto-reológico a través de un medio poroso no isotrópico bajo el efecto de un 
campo magnético externo, uniforme y transversal. La permeabilidad se toma como 
una función de distribución exponencial de la dirección transversal. Para esto se ha 
utilizado la ecuación de Darcy-Brinkman-Lapwood-Lorentz para el flujo de fluidos en 
medios porosos y se ha resuelto en condiciones de límite antideslizantes mediante el 
método modificado de perturbación homotópica y los resultados fueron validados por 
el método numérico del disparo. El análisis de los resultados se ha realizado a través 
de las variables: velocidad, flujo volumétrico y esfuerzo de deformación en la pared. 
Estos demuestran que los parámetros más importantes son el número de Darcy y la 
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relación de viscosidad. Asimismo, se demuestra que valores bajos de estos parámetros 
minimizan los efectos de cizallamiento viscoso de Brinkman.

Palabras clave: Régimen de Brinkman; Número magnético de Hartmann; permeabilidad 
exponencial; fluido magneto-reológico.

INTRODUCTION

Single- and multi-phase fluid flow through and over porous layers are encountered in 
the natural environment and have a host of practical applications in industry. In natural 
environments, groundwater flow, flow in channels and rivers over porous beds, flow of 
oil and gas in reservoirs, deep-bed filtration processes, the movement of nutrients into 
plants, and the flow of blood in human tissues are only a few examples of flow through 
naturally occurring porous layers. In industry, heat and mass transfer in porous layers 
continues to receive considerable attention due to its various applications, which span 
many aspects of human endeavor. These include applications in lubrication theory in 
mechanisms with porous lining, design of industrial filters and liquid-dust separators, 
design of heat exchangers, and membrane analysis. These, and many other applications, 
have been extensively reviewed by various authors (cf. Nield and Bejan, [1], Rudraiah, [2], 
and the references therein).

A special type of flow that is of particular interest to the current work is the 
magnetohydrodynamic (MHD) flow through variable permeability porous media. 
This flow has many industrial applications in fields that include power generation, 
oil industry, refining of crude oil, and polymer technology. Magnetohydrodynamic 
pumps and accelerators, aerodynamic heating, electrostatic precipitation, aerosols and 
sprays, biotechnology, medicine, optical modulators, tunable optical fiber filters, optical 
grating, optical switches, stretching of plastic sheets, and metallurgy are further areas of 
applications that underscore the importance of MHD flow in industrial settings. Further 
details on these and many other applications can be found in the works of Kuzhir et al. [3], 
Attia and Abdeen [4], Bárcena et al. [5], Mishra et al. [6], and Shehzad and Hayat [7].

The above and many other applications have given impetus to the explosive knowledge 
witnessed over the past eight decades in the area of porous media studies. Recent years, 
however, witnessed an escalation of interest in the study of fluid flow through porous 
media with variable porosity and permeability. This interest stems from two broad reasons, 
the first of which is that naturally occurring porous media does not possess constant 
porosity and permeability. The second is that accurate and realistic modelling of flow 
through porous media must take into account the porous microstructure of the flow 
domain, which influences the effective viscosity of the fluid in the porous medium and 
inevitably leads to the need for flow models with variable porosity and permeability [8]. 
Take, for example, the celebrated Brinkman’s equation [9], which is the most recognized 
model of fluid flow through porous media in the presence of macroscopic boundary (cf. 
Hamdan & Kamel [10] and the references therein), due to its incorporation of a viscous 
shear term necessary to handle no-slip condition on a macroscopic, solid boundary. 

https://dx.doi.org/10.18272/aci.v13i2.2259
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Various authors have discussed validity and limitations of Brinkman’s equation (cf. 
Auriault [11], Nield and Bejan [1], and the references therein). Rudraiah [2], suggested 
that Brinkman’s equation is the most appropriate model of flow through porous 
layers of finite depth, while Parvazinia et. al. [12] determined that when Brinkman’s 
equation is used (depending on Darcy number, Da), three different flow regimes are 
obtained: a free flow regime (Da ≥ 1), a Brinkman regime ( 10-6 ≤ Da < 1), and a Darcy 
regime (Da < 10-6 ). Nield [13] elegantly concluded that the use of Brinkman’s viscous 
shear term requires a redefinition of the porosity near a solid boundary due to a 
process referred to as channeling. The above investigations underscore the need 
for variable permeability flow modelling in realistic applications of flow through 
porous media in the presence of solid boundaries. Sahraoui and Kaviany [14] and 
Kaviany [15] studied the case of flow through variable permeability media when 
using Brinkman’s equation and emphasized the need for variable permeability near 
macroscopic boundaries, whether slip or no-slip conditions are applied. Lundgren 
[16] showed that the effective viscosity depends on the porosity of the medium 
and the viscosity of the base fluid, and formally proved the validity of the Brinkman 
equation for dilute concentration of particles.

Although permeability is a tensorial quantity in three-dimensional flow through 
naturally occurring and heterogeneous media, idealizations of flow through two 
space dimensions and unidirectional flow through porous layers have given rise 
to variable permeability modelling using algebraic functions of one of the space 
variables. A number of variable permeability models are available in the literature 
and serve a spectrum of flow situations and flow domains of specific industrial 
applications (cf. Cheng [17], Hamdan and Abu Zaytoon [18], Hamdan and Kamel 
[10], and the references therein). An important subset of the available variable 
permeability models that received the most attention in the literature is summarized 
in what follows.

Elaiw et al. [19], Hassanien [20], Hassanien et al. [21], and Jang and Chen [22] 
reduced the two-dimensional permeability model of Chandrasekhara et al. [23] to 
a one-dimensional model of the form: K(y)=K

∞
 (1 + de-y/γ), where d and γ are constants, 

K(y) is the permeability function and K
∞
 is the value of permeability at the edge of the 

boundary layer. Other authors employed the two-dimension permeability model of 
Chandrasekhara et al. (cf. Chandrasekhara et al. [24] [25] [23] Goldstein et al. [26]). Other 
important models of one-dimensional permeability variation used in soil mechanics 
include those found in Schiffman and Gibson [27] and Mahmoud and Deresiewicz [28]. 
Cheng [17] used the model K(y)=K

o
 (1 + βy* )η, where β and η are parameters of curve 

fittings, d is a characteristic length of geometry, K
0
 is the characteristic permeability of 

the medium, and y* = y/d. The value normally used in the literature for η is 2.

Rees and Pop [29] studied the free convection in a vertical porous medium with the 
exponential model of permeability K = K

∞ 
+ (K

w 
– K

∞
) e-y/d, where  is the permeability 

at the wall,  is the permeability of the ambient medium, and d is the length scale 
over which the permeability varies. Additionally, they indicated when a porous 
medium is bounded by an impermeable surface, it is well known that the porosity 
and hence the permeability increase near that surface. Alloui et al. [30] investigated 
the natural convection in a porous layer with an exponentially variable permeability 
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as a function of the thickness of the layer, of the form K = K
0
ecy where c is a fitting 

parameter and K
0
 is an average permeability. Abu Zaytoon [24] analyzed the 

behavior of flow in a porous layer with exponential permeability variations using 
the permeability function K (y) = 1—

2e  (e – e-y). Choukairy and Bennacer [31] presented a 
numerical and analytical analysis of the thermo-solutal convection in a heterogeneous 
porous layer enclosed in a rectangular cavity with the permeability changing with 
depth, using the model K(y) = 1 + 4 (2y)n where n is a parameter.

A problem of interest, and the subject matter of this work, is the MHD flow between 
two parallel plates, known as Hartmann flow (cf. Hartmann and Lazarus [32], Jeffrey 
[33], Müller and Bühler [34], Rothmayer [35], and the references therein). In the 
absence of MHD effects, fluid flow through a porous channel bounded by two flat 
plates has received considerable attention in the literature due to the importance of 
this configuration in furthering our understanding of flow behaviour through porous 
channels (cf. Awartani and Hamdan [36], Fu et al. [37], Harwin [38], Kaviany [39], Liu et 
al. [40], and the references therein). 

When magnetorheological effects are taken into account, Pillai et al. [41] offered a 
study of the steady flow of a magnetorheological fluid in an inclined channel over a 
porous bed with a decaying exponential permeability that depends on the depth of 
the porous bed, using the model K (y) = K

0
 e-cy, proposed by Sinha and Chadda [42]. 

Narasimha Murthy and Feyen [43] studied the influence of the variable permeability 
on the two MHD basic flows in porous media, using the variable permeability model 
K(y) = K

0
(1 + y—

h
)2, where K

0
 is the permeability in the interior of the porous medium and 

h the porous layer thickness. Two other important variable permeability models in the 
study of MHD flow have been reported in the works of Mathew [44] and Srivastava 
and Deo [45]. Mathew [44] employed a periodic variable permeability model in the 
study of two-dimensional MHD convective heat transfer through a vertical porous 
channel using the permeability model K (y) = K

o
 (1 + ε cos (πy))–1, while Srivastava and Deo 

[45] employed the variable permeability model K = K
0
(1 – εy)2, where 0 ≤ ε < 1, in their 

study of Couette and Poiseuille MHD plane flow in a porous channel.

The model of variable permeability employed by Alloui et al. [30], namely, K(y) = K
0
 ecy, 

is of interest in this current work, in which we investigate the fully developed MHD 
flow through a porous medium bounded by parallel plates. Interest in this model 
stems from the fact that permeability is exponentially increasing and places higher 
permeability in one of the regions of the infinite channel. The objective here is to 
provide insight into the effects of the flow and medium parameters (Darcy number, 
Hartmann number, and viscosity ratio) on the flow characteristics of velocity, flow 
rate, and wall shear stress. Furthermore, since a choice of variable permeability 
model influences our understanding of the intrinsic features of the flow, data 
obtained in this work is intended to provide a baseline and a benchmark for the 
sake of comparison when other variable permeability models are employed. 

In using the model of Alloui et al. [30], this work provides a formulation of the MHD flow 
problem through a porous channel of infinite extent between two parallel, horizontal, 
and impermeable plates, and provides its solution by using the Modified Homotopy 
Perturbation Method (MHPM) of He [46]. The solution obtained using the currently 
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proposed method is compared with the numerical solution of the same problem using 
the Numerical Shooting Algorithm, in order to validate the results obtained. 

Numerical calculations were performed using Mathematica® V 12.3 symbolic software.

MATHEMATICAL FORMULATION OF THE PROBLEM

Bo

h

upper plate

porous medium

lower plate

y~

u~

x~

FIGURE 1. Sketch of the porous medium. The flow direction is the  direction. 

Consider the fully developed flow through the infinite porous channel depicted in Fig. 1, 
of a magnetorheological, incompressible, and electrically conducting fluid. The external 
magnetic field is transverse and uniform, without induced magnetic field inside the 
porous medium because of a very low Reynolds magnetic number. The electric field 
in the porous medium is very small or negligible. The pressure gradient is constant 
and drives the flow along the longitudinal axis. The permeability model of the porous 
medium is assumed to depend on the transverse direction and takes the following form:

                                                     (1)

where c is a positive number and K
o
 is the average permeability of the medium. 

GOVERNING EQUATIONS

Geindreau and Auriault [47] provided comprehensive analysis of MHD flow through 
porous media, which includes development of the full set of equations governing the 
flow. The momentum equation used in their analysis is the one obtained by Rudraiah 
et.al. [48] through modification of Brinkman’s equation and Darcy’s law. This equation is 
used in the current work (in the form listed as equation (3), below).

The governing equations for the fluid flow in the porous medium are the following 
continuity and momentum equations, respectively:

                                                            (2)

https://dx.doi.org/10.18272/aci.v13i2.2259
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                                            (3)

where, is the Lorentz body-force, which is: 

                                                     (4)

and , the current density, is defined as: 

                                                     (5)

where  is the dimensional velocity field, in which is assumed that   = (u~, 0,0). 
Additionally,   K = (y~) is the dimensional permeability,  = (0, B

0
, 0) the magnetic field 

intensity,  the electrical conductivity of the fluid,  the pressure gradient,  the fluid 
viscosity, and the effective viscosity in the porous medium.

For fully developed flow along the x-axis, Eqs. (1) to (5) reduce to:

                                                                 (6)

                                           (7)

Equation (8) implies that  u~= u~ (y). The no-slip boundary conditions for Eq. (7), are thus 
given by:

                                                (8)

To convert Eq. (7) into a non-dimensional form, the following variables are used:

                             (9)

where U is the characteristic velocity, M the Hartmann number, Da the Darcy 
number,  the viscosity ratio, and P (P > 0) the non-dimensional pressure gradient.

Using (9), Eq. (7) takes the following dimensionless form:

                                     (10)

Dimensionless boundary conditions, Eq. (10), take the form:

                                          (11)

The physical quantities to investigate in this work are the dimensionless volumetric flow 
rate, , and the dimensionless shear stress , defined, respectively, as:

https://dx.doi.org/10.18272/aci.v13i2.2259
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                                                  (12)

                                                  (13)

where the subscripts 0 and 1 in Eq. (13) indicate the shear stress at the lower and upper 
walls, respectively.

METHOD OF SOLUTION

If we try to solve Eq. (10) analytically by using the transformation z = e–cy, we obtain 
the following differential equation: 

                    (14)

Equation (14) is a hyperbolic Bessel differential equation, which has the analytical solution:

        (15)

where C
1
 and C

2
 are constants to be evaluated at boundary conditions,  Iv and Kv are the 

modified Bessel functions of the first and second kind, respectively, W is the Wronskian 
of  and , and  is the order of the modified Bessel 
functions, which is equal to: 

                                                         (16)

Therefore, the analytical solution of u(y) can be written as:

    (17)

This result demonstrates the validity of the statement made by Merabet et al. [49] as 
they indicated that for the case of flow through porous media, as governed by the 
Darcy-Lapwood-Brinkman model, exact solutions are rare. It was reported that in 
some cases, it is possible to find exact solutions, but this requires special functions, 
such as the Airy’s, Bessel or modified Bessel, or Nield-Kuznetsov functions (cf. Cheng 
[17], Abu Zaytoon et al. [50], Alzahrani et al. [3], and the references therein). 

https://dx.doi.org/10.18272/aci.v13i2.2259
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Equation (17) is hardly tractable, even though it possesses an analytical solution. 
Therefore, we seek to find a solution that can produce some results in order to 
provide some insight into the flow regime. To accomplish this, we base the current 
work on the work of Seyf and Rassoulinejad-Mousavi [51] who used the Homotopy 
Perturbation Method (HPM) technique to solve fluid flow and heat transfer problems 
in saturated porous media. However, the HPM technique is implemented here in a 
modified version introduced by He [46]. Using this modified version, we obtain an 
approximate solution of Eq. (10). 

As a means of validating this modified version and the results obtained, we offer a 
comparison of the results with those that we obtain using a Numerical Shooting 
Method (NSM). 

Analysis of Homotopy Perturbation Method (HPM)

To illustrate the basic concept of Homotopy Perturbation Method (cf. He [52] [53] [54] 
[55] [56] [57] Jazbi and Moini [58], Usman et al. [59], and the references therein), we 
consider the following nonlinear functional equation:

                                              (18)

with the boundary conditions

                                              (19)

where A is a general functional operator, B the boundary operator, f(r) the known analytic 
function, and  the boundary of the domain . 

                             (20)

The operator  A  is decomposed into the sum of a linear and a nonlinear part, 
as A(u) = L(u) + N(u), where L is the linear and N is the nonlinear part. Eq. (18) can thus 
be written as:

We construct a Homotopy v(r, p): Ω × [0, 1] → R satisfying:

          (21)

Hence

                (22)

where  is an initial approximation for the solution of Eq. (20) that satisfies the boundary 
conditions, as:

              (23)

https://dx.doi.org/10.18272/aci.v13i2.2259
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where p ∊  [0,  1] is the embedding parameter. This shows that  H(v,  p) continuously 
traces an implicitly defined curve from a starting point H(, 0) to a solution H(v, 1). The 
embedding parameter p increases monotonously from zero to one as the trivial linear 
part L(u) = 0 deforms continuously to the original problem A(u) = f(r). The embedding 
parameter p can be considered as an expanding parameter to obtain

                                         (24)

The solution is obtained by taking the limit as p tends to 1 in Eq. (24), namely

                                   (25)

He’s Modified Homotopy Perturbation Method (MHPM)

The method proposed by He [46] consists of the use of an initial approximation (or a trial 
function) of the form: 

                                                    (26)

where a is an unknown constant to be determined, and the trial function satisfies the 
boundary conditions. According to the initial approximation, a homotopy should be 
constructed such that:

                        (27)

and, when p = 0, the solution of Eq. (27) is Eq. (26). When p = 1, we recover solution (25).

The solution procedure is similar to that of classical perturbation method. Using p as an 
expanding parameter, as one would in classic perturbation method, we obtain:

             (28)

The optimal identification of the unknown parameter in the trial function is a method of 
weighted residuals, namely, the least squares method:

                                              (29)

where R is the residual given by R(u(y)) = L(u) + N(u).

Setting p = 1, we obtain the first-order approximate solution which reads:

                                              (30)

https://dx.doi.org/10.18272/aci.v13i2.2259
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Numerical Shooting Method

In order to provide validation for the results obtained using the Modified Homotopy 
Perturbation Method (MHPM), we provide a solution for  obtained using the 
Numerical Shooting Method (NSM). Computations have been carried out using 
Mathematica® V 12.3 symbolic software. Comparisons are discussed in the section 
of Results and Analysis, using data in Tables 1 and 2.

TABLE 1. Comparison of u(y) obtained by MHPM and NSM

M = 1, Da = 1, c = 0.35, P = 5, μr = 1

y MHMP NSM Difference

0 0 0 0

0.1 0.19279852281653900 0.19275803841960400 4.04843969349922E-05

0.2 0.33924641849525300 0.33921985612208700 2.65623731660058E-05

0.3 0.44213497291476800 0.44216027115848900 2.52982437209948E-05

0.4 0.50336190350106800 0.50343333593362400 7.14324325560289E-05

0.5 0.52397533124740600 0.52405245422526400 7.71229778580018E-05

0.6 0.50421483755058900 0.50424983725450200 3.49997039129635E-05

0.7 0.44354976981598500 0.44351768841736000 3.20813986249835E-05

0.8 0.34071495142945700 0.34063365481816200 8.12966112950231E-05

0.9 0.19374394372467200 0.19367172438820800 7.22193364639800E-05

1 -0.00000000000006858 0.00000000159566237 1.59573095046188E-09

TABLE 2. Comparison of u(y) obtained by MHPM and NSM

M =1, Da = 0.1, c = 0.35, P = 5, μr = 8

y MHMP NSM Difference

0 0 0 0

0.1 0.02535938910102333 0.02535795330998652 1.43579103679958E-06

0.2 0.04479575192615648 0.04479557849314981 1.73433006601942E-07

0.3 0.05855152602734696 0.05855410186180611 2.57583445920084E-06

0.4 0.06678397121908308 0.06678838725043413 4.41603135109547E-06

0.5 0.06957245254763313 0.06957617226896888 3.71972133569876E-06

0.6 0.06692524042597543 0.06692575550897644 5.15083001001448E-07

0.7 0.05878585508979328 0.0587822835297458 3.57156004739817E-06

https://dx.doi.org/10.18272/aci.v13i2.2259
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M =1, Da = 0.1, c = 0.35, P = 5, μr = 8

y MHMP NSM Difference

0.8 0.0450389811453929 0.04503294332770041 6.03781769249745E-06

0.9 0.02551597666129448 0.025511144614260108 4.83204703429982E-06

1 6.123231297622667E-15 -9.6930110788705E-10 9.69307231118348E-10

RESULTS AND ANALYSIS

Solutions obtained by MHPM from Eqs. (26)-(30) are as follows: 

          (31)

with parameter a given by:

          (32)

The dimensionless volumetric flow rate and the shear stress are given, respectively, by: 

     (33)

     (34)

In Tables 1 and 2 we provide validation of MHPM by comparing values of velocity 
obtained using MHPM with those obtained using NSM, for some chosen values of the 
parameters M, Da, c, P and µ

r. 
Both Tables illustrate excellent agreement for all parameters 

tested, with computed values in agreement for at least six significant digits. Maximum 
absolute error in both Tables is less than 5×10-5.
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0.2 0.4 0.6 0.8 1.0
y

1.2

1.4

1.6

1.8

2.0

2.2

Ko c = 0.0001, 0.1, 0.35, 0.5, 1 
K[y]

FIGURE 2. Exponential permeability variation as a function of fitting factor c.

Fig. 2 illustrates the dimensionless permeability function, scaled by the average 
permeability, as a function of the fitting parameter. When the fitting parameter c 
approaches zero, the permeability approaches a constant value. At higher values of c, 
higher values of the permeability function are obtained. This behaviour is expected in 
light of the exponential nature of the chosen permeability function. It also emphasizes 
the important role of the fitting parameter in controlling variations in permeability.

0.2 0.4 0.6 0.8 1.0
y

0.1

0.2

0.3

0.4

0.5

0.6
u (y)

M = 0, 1.0, 3.0, 5.0

Da = 1, c = 0.35, P = 5, µr = 1

FIGURE 3. Velocity profile as a function of M and fixed values of Da, c, P, and µr

Fig. 3 illustrates the velocity as a function of Hartman number, M, and fixed values of 
Da, c, P, and µ

r. 
When M increases, the velocity decreases, thus indicating the slowing 

effect the magnetic number has on velocity.
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Da =0.001, 0.1, 1.0, 100

0.2 0.4 0.6 0.8 1.0
y

0.1

0.2

0.3

0.4

0.5

0.6
u (y) M = 1, c = 0.35, P = 5, µr = 1

FIGURE 4. Velocity profile as a function of Da and fixed values of M, c, P, and µr

Fig. 4 illustrates velocity as a function of Darcy number, Da, and fixed values of M, c, 
P, and µ

r
. The effect of increasing Darcy number is of course to increase velocity due to 

the fact that permeability increases with Darcy number. For very low values of Da, 
the velocity becomes very small and starts approaching zero as we approach the 
solid. We point out here that Tables 1 and 2 do not show . This might be attributed 
to the fact that solid boundary  is a computed quantity, hence computed within the 
error tolerance of the computation procedure, or machine zero.

The volumetric flow rate given by Eq. (12) is the area bounded by the velocity curves 
and the y-axis. Based on the velocity behavior in Fig. 3, Fig. 4, and Fig. 5, we conclude 
that this bounded area (hence the volumetric flow rate) increases with decreasing 
M, increases with increasing Da, and decreases with increasing .

µ
r
 =0.01, 0.1, 1.0, 8.0

0.2 0.4 0.6 0.8 1.0
y

-1.0

-0.5

0

0.5

1.0

1.5

u (y) M = 1, Da = 0.1, c = 0,35, P = 5

FIGURE 5. Velocity profile as a function of µr and fixed values of M, Da, c, and P.
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Fig. 5 illustrates velocity as a function of µ
r 
and fixed values of M, Da, c, and P. With 

increasing µ
r
, Fig. 5 shows that velocity decreases. This might be due to the increase 

in the shear term in Eq. (9). For low values of µ
r
, the shear term becomes insignificant, 

and Eq. (7) behaves like a Darcy equation. According to the work of  Ochoa-
Tapia and Whitaker [60], the viscosity ratio is equal to the reciprocal of the porosity of 
the porous medium. A value of µ

r
 = 0.01 implies that porosity is 100% or unity. This is a 

physical impossibility since a porosity of unity implies the absence of a porous matrix 
and contradicts the Darcy-like behavior when µ

r
 is small. On the other hand, Nield [61] 

indicated that the Brinkman equation cannot be rigorously justified except when the 
porosity is close to unity and the self-consistent formulation of Brinkman breaks down 
when the porosity is less than 0.6. This translates into the critical value of µ

r
 ≈1.67. For 

larger values of µ
r
, Fig. 5 shows that the velocity decreases drastically until it vanishes 

when this value is higher than 8. While the above indicates that , Givler and Altobelli 
[62] used a porosity value of ϕ = 0.972 for water flow in a porous medium made of rigid 
foam, which corresponds to μ

r 
≈ 1.03. 

MHPM

NSM

0.2 0.4 0.6 0.8 1.0
y0

1

2

3

4

u (y) M = 1, Da = 1, P = 5, µr = 1

FIGURE 6. Comparison of the velocity profile between MHPM and NSM at low µr.

Fig. 6 supports the analysis obtained using Fig. 5 and provides a comparison of the 
velocity profiles obtained using the MHPM and the NSM. At viscosity ratio value of 
 µ

r 
= 0.01, ​​the velocity profile obtained using MHPM loses its accuracy, which indicates 

that the velocity obtained by MHPM is valid for µ
r 
> 0.01.
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MHPM

NSM

0.2 0.4 0.6 0.8 1.0
y0

0.02

0.04

0.03

u (y) M = 1, Da = 0.001, c = 0.35, µr = 1

FIGURE 7. Comparison of the velocity profile between MHPM and NSM at low Da.

In Fig. 7 we observe that for low values ​​of Da, (Da ˂ 0.001) the Brinkman model for the 
MHD fluid flow through a porous medium with exponentially variable permeability is 
not valid, by comparing the results of the two approximation methods used in this work. 
This might be due to the fact that for small values of Da, permeability is low, and the flow 
becomes Darcy-like, thus resulting in insignificant Brinkman effects.

c = 0.2, 0.35, 1.0

0.2 0.4 0.6 0.8 1.0
y

0.1

0.2

0.3

u (y)

M = 1, Da = 0.1, P = 0.5

FIGURE 8. Velocity profile as a function of c and fixed values of M, Da, P, and µr

Fig. 8 illustrates the velocity as a function of c for fixed values of M, Da, P and µ
r.
 Velocity 

increases with increasing values of fitting parameter, c, for c ≥ 0.2. When c < 0.2 the 
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computed velocity is unreliable due to low permeability. Low permeability results in 
Darcy-like behavior, while the Brinkman effects become insignificant.

-0.5

0.5

-1.0

1.0

-1.5

1.5

M = 0, 1.0, 3.0, 5.0

M = 0, 1.0, 3.0, 5.0

zw (y)

y
0.2 0.4 0.8 1.00.6

FIGURE 9. Wall shear stress  as a function of  for P = 5, 

-0.5

0.5

-1.0

1.0

M = 0, 1.0, 3.0, 5.0

M = 0, 1.0, 3.0, 5.0

zw (y)

y
0.2 0.4 0.6 0.8 1.0

FIGURE 10. Dimensionless wall shear stress τw (y) as a function of μr for P = 5, Da =1, M=1, and c = 0.35.

Fig. 9 and Fig. 10 illustrate the effects of M and µ
r
, respectively, on wall shear stress, when 

the values of other parameters assume fixed values. In Fig. 9, when M increases,  τ
w
 

decreases in the range 0 ≤ y <0.5 and increases in the range 0.5 < y ≤ 1. In Fig. 10, when 
μ

r
 increases,  τ

w 
decreases in the range  0 ≤ y <0.5 and increases in the range 0.5 < y ≤ 1. 
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CONCLUSIONS AND RECOMMENDATIONS

An analysis of the flow of MHD fluid through a porous medium of increasing exponential 
permeability has been carried out in order to provide a baseline study and a benchmark 
with which future analysis of flow through variable permeability media can be compared. 

The MHPM was used to find the solution of the Darcy-Brinkman model, under the 
no-slip boundary condition. Effects of medium and flow parameters on the velocity 
distribution, volumetric flow rate and the wall shear stress have been analyzed. 

Three parameters have been examined with special interest: c, Da, and µ
r
. Part of the 

analysis is to define the limit of the viscosity ratio in the model of Darcy-Brinkman. 
Because of the foregoing, the validity of the modified Brinkman's equation for the MHD 
fluid flow through a porous medium with exponentially variable permeability should 
be further evaluated to confirm if indeed the viscosity ratio depends solely on porosity 
as stated by Ochoa-Tapia and Whitaker [60] or if other factors would be included such 
as tortuosity as indicated by other authors (cf. Liu and Masliyah [63] and the references 
therein). 

Based on the results and analysis of this work, the following conclusions can be drawn:

1.	 Of the three parameters, c, Da, and μ
r
, the two most critical parameters are Da and 

μ
r
. Low values of these parameters result in the Darcy-Brinkman equation behaving 

like a Darcy equation. Brinkman’s viscous shear effects become insignificant.

2.	 The permeability fitting parameter plays an important role in controlling 
variations in permeability.

3.	 A wide range of  0.01 < μ
r  

< 1.67 has been suggested based on velocity profiles 
obtained in this work. Again, low values of μ

r
 hamper the solutions obtained by 

the MHPM.

4.	 Results obtained using MHPM have been validated using a Numerical Shooting 
Method. There is an agreement of up to six significant figures, and a maximum 
absolute error not exceeding 5×10-5, between the velocity values computed using 
MHPM and NSM.

5.	 As the magnetic number M increases, the velocity decreases, thus indicating 
the slowing effect the magnetic number has on velocity.

6.	 Increasing Darcy number implies increasing permeability, which in turn results 
in increasing flow velocity.

7.	 Volumetric flow rate increases with decreasing M, increases with increasing Da, 
and decreases with increasing μ

r
.

8.	 When M increases,  τ
w
 decreases in the range  0 ≤ y < 0.5 and increases in the 

range 0.5 < y ≤ 1. 
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9.	 When μ
r
 increases, τ

w
 decreases in the range 0 ≤ y < 0.5 and increases in the range 

0.5 < y ≤ 1.

Based on results and analysis of this work, and the conclusions drawn above, the 
following are recommendations that point to the need for future work in this area of 
research:

i.	 Permeability distribution influences model equations’ behavior and solution. It is 
imperative to provide further studies that employ other permeability functions for 
the sake of comparison.

ii.	 Darcy number is of greatest influence on the flow quantities, for a given permeability 
distribution. Low values of Da render Brinkman’s shear effects insignificant. It is 
imperative to determine, for a given permeability distribution, the range of values 
that Da can assume.

iii.	 The need for a methodology to determine accurate values of μ
r
, rather than ranges, 

remains an outstanding research problem without consensus. Matters become 
more complicated when MHD effects are taken into account. It is therefore 
imperative for future work to consider a realistic method for estimating μ

r
.

DISCUSSION

In this section, we provide insight on this work in light of state-of-the-art knowledge in 
the field. 

At the outset, we wish to emphasize that while research work in MHD flow through 
porous media has received considerable attention for more than half a century, and 
continues to receive attention due to its important applications, most of the work in 
this field has been centered around flow through constant permeability porous media. 
However, impetus is being generated and focus is shifting towards flow through variable 
permeability media, as is witnessed by the current work. This might be due in part to 
recent developments in variable permeability models, as discussed in the introduction 
section of this work, where most of the available models have been documented.

Literature Survey

In order to initiate this work, the authors have carried out a thorough literature survey 
in the areas of MHD flow, MHD flow through porous media, MHD flow through porous 
media with variable permeability and porosity, and variable permeability porous 
layers. The most relevant bibliographic data to the current work are listed in the 
references section. 

The introduction section follows the historical interest of MHD flow between parallel 
plates from the inception of the problem with the works of Hartmann and Lazarus [32] 
and Jeffrey [33] of the mid-1930’s to the work of Rudraiah et.al. [48], mid-1970’s work on 
MHD flow through porous media, to the 21st century work of Geindreau and Auriault [47], 

https://dx.doi.org/10.18272/aci.v13i2.2259
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in which MHD equations of flow through porous media have been cast in their final and 
complete form.

The literature survey also included the most relevant and available models of variable 
permeability media and the specific MHD flow problems that have been considered in 
the literature. This culminated in a selection of a most relevant exponential permeability 
model that serves the objectives of this work.

Model Equations

Governing equations used in this work are the state-of-the-art comprehensive model of 
MHD flow through porous media that was initiated by Rudraiah et.al. [48] and thoroughly 
analyzed and derived by Geindreau and Auriault [47]. These model equations were 
used in the formulation of the problem considered in this work, and an exponential 
permeability function has been incorporated in the model equations.

Solution to Model Equations

Generally speaking, many problems in theoretical mechanics lend themselves to three 
types of solution methodologies: (i) Analytical solutions; (ii) Numerical solutions; and (iii) 
Special purpose methodologies.

The current problem is differential equations based. The authors are pleased to have 
been able to provide solutions using the three methodologies. An analytic solution 
has been provided in terms of Bessel functions. Alas, the complicated nature of these 
functions rendered the solution impractical and hardly tractable. A numerical solution 
based on Numerical Shooting Method (NSM) has also been provided to validate the 
solution obtained using the efficient technique of Modified Homotopy Perturbation 
Method (MHPM). Agreement between the NSM and MHPM methods has been discussed 
in this work and assured us of the correctness of solutions obtained.

Presentation of Results

Clear graphs and tables have been used to present our findings in this work. We 
presented a thorough and accurate account of what the data told us. An objective of 
the work has been to study the effects of flow and medium parameters on velocity, 
volumetric flow rate, and wall shear stress. We believe, based on the conclusions drawn, 
that this objective has been achieved.

Interpretation of Findings

Data obtained in this work supported some critical conclusions of the effects of the 
parameters and limitations of the methodologies used. Critical ranges of some 
parameters have been identified. They also point to the need for continuing efforts 
in this research area. We have searched for some partial answers, but now we must 
research in order to improve on the obtained solutions by considering further models 
that better predict a more accurate behavior, or else to provide methodologies that 
overcome some of the limitations that we have identified.
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Overall Contribution and Significance

We believe that our modest contribution is significant to the advancement of state-of-
the-art knowledge in the field and presents a baseline and a bench mark with which 
further contributions can be compared. 
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