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Abstract

In this work we will focus on the causal character of Carter Spacetime (see [2],[10]). The
importance of this spacetime is the following: for the causally best well behaved spacetimes
(the globally hyperbolic ones), there are several characterizations or aliérriative definitions.
In some cases, it has been shown that some of the causal properties required in these char-
acterizations can be weakened. But Carter spacetime provides a counterexample for an
impossible relaxation in one of them. We studied the possibility of Carter spacetime to be a
counlterexample for impossible lessening in another characterization, based on the previous
results.

In particular, we will prove that the time-separation or Lorentzian distance between two
chosen points in Carter spacetime is infinite. Although this spacetime turned out not to be
the counterexample we were looking for, the found result is interepngeand provides

ideas for alternate approaches to the possibility of weakening the mentioned characteriza-
tion.

Keywords. theory of causality, global hyperbolicity, Carter spacetime.
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Comportamiento de causalidaden el espaciotiempode Carter
Resumen

En esta investigacién nos enfocamos en el caracter causal del espaciotiempo de Carter(ver
[2],[L0]). Este espaciotiempo es importante por la siguiente razon: para los espaciotiem-
pos con un comportamiento causal 6ptimo, es decir, los globalmente hiperbdlicos, existen
varias caracterizaciones o definiciones alternativas. En algunos casos se ha demostrado que
ciertas condiciones de causalidad requeridas en tales caracterizaciones pueden relajarse.
Pero el espaciotiempo de Carter nos da un contraejemplo que hace imposible la relajacion
en una de ellas. Basandonos en estos resultados previos, estudiamos la posibilidad de que
el espaciotiempo de Carter sea también un contraejemplo para otra caracterizacion.

En particular, demostraremos que la separacion temporal o distancia Lorentziana entre dos
puntos del espaciotiempo de Carter es infinita. Si bien este espaciotiempo resulté no ser
el contraejemplo buscado, la conclusién es de por si interesante y aporta ideas alternativas
para estudiar la posibilidad o no de rebajar la condicion en la caracterizacién mencionada.

Palabras Clave.teoria de causalidad, hiperbolicidad global, espaciotiempo de Carter.

1 Introduction In this section, we will introduce some basic notation

] ) o and conventions in Lorentzian geometry and an outline
Inthe intersection between General Relativity and Lorent-f this paper. We will not state any of the definitions and
zian Geometry there is an interesting theory, called the rgperties in Theory of Causality since, if interested,
Theory of Causality, which studies the causal relations one can find an excellent review on the last advances on
between points by a_malyzmg the behaviour of the causal Theory of Causality in|3], where all the required defi-
curves in a spacetime both locally and globally. We pjtions, the causal conditions and the interplay between
will focus our attention on the causal structure of Carter inem are carefully studied. It is worth mentioning that
spacetime (see![2].[10]) and on the alternate characteri- 5 new and interesting ordering of spacetimes has been
zations for the causally best well-behaved spacetimes in yecently carried out by Garcia-Parrado and Senovilla in
the causal ladder: the globally hyperbolic spacetimes.
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[6],[Z], and refined by Garcia-Parrado and Sanchez in is said to betimelike, lightlike, spaceliker causalif

[8].
1.1 Notation and conventions

In this article, aspacetimé M, g) is a Haussdorf, para-

compact, (space) orientable, time orientable, connected

and differentiable manifold of dimensiom > 2, to-
gether with a non-degenerate 2-covariant tensor fjeld
of signaturd (+ —...—). A pointp in a spacetime is
usually calledan event The Lorentzian metricg over

a spacetime ensures the existence of a unique torsion-

free V.Y — Vy X = [X,Y]) connection or covariant
derivative, thel.evi-Civita connectiorV on M, under
which the metricg is covariantly constant\{g = 0).

It also allows to define the causal character of a vec-

torv € T,M: itis timelikeif g,(v,v) > 0; spacelike
if g,(v,v) < 0; lightlike if g,(v,v) = 0 andv # 0;
causalif it is imelike or lightlike, andnullBif it is light-
like or the zero vector. At each poiptof a Lorentzian
manifold(M, g), i.e. a differentiable manifold endowed

with a Lorentzian metric, the set of all causal vectors in

the tangent spacE, M is called thecausal con@verp.

in each differentiable piece’ is a timelike, lightlike,
spacelike or causal curve respectively, and the two lat-
eral tangent vectors at each break lie in the same causal
cone. From now on, if it is not specified, a curve will
be piecewise differentiable. THengthover a space-
time of a piecewise differentiable timelike, lightlike or
spacelike curvex(7) between two points = «(a) and

q = «(b) is defined as:

b
L(o) = / Vi@ @ (. (@)

Let C'(p, q) be the set of all future directed piecewise
differentiable causal curves connectipgvith ¢q. The
Lorentzian distancer time separation between the points

p andg on a Lorentzian manifold)/, g) is defined as:

sup L(«)
a€C(p,q)

d(p,q) =

Let now(M, g) be a spacetime ande M. Thechrono-

This cone has two connected components. A time ori- logical future ofp, denoted byl ™ (p), is defined as the

entation ap is the choice of one of the connected com-
ponents, which will be callethe future causal cone
obviously, the other component is called freest causal
coné. Moreover, a spacetime fame orientablef and
only if there exists a globally defined (non-unique) time-
like vector fieldVV, which will give the future direc-

set of points inM that can be connected withby a
(piecewise differentiable) past directed timelike curve.
Thecausal future o, denoted by/ ™ (p), is defined as
the set of points inl/ that can be connected withby

a (piecewise differentiable) past directed causal curve,
plusp. The chronological past—(p) and causal past

tion of the spacetime. In that case, any causal vector J~(p) are defined in an analogous way. There is an-

v € T,,M is future directedf and only if g, (v, V,,) > 0
and past directedif and only if g,(v,V,) < 0. The
causal cones defined on a spacetiiieare a subset of
T, M at each poinp. Recall that globally the metric of

a spacetime changes from point to point and that causes

the cones to twist when moving through it.

Let « be a differentiable curve witha # 0 (i.e., with
non-vanishing tangent vector fietd) defined on an in-
tervall C R, beingr € I the parameter of the curve.
The end valuea andb of the interval may be infinity,
thatis—oo < a < b < oco. The curvea is timelike,
lightlike, spacelikeor causalif its tangent vectog’ is
timelike, lightlike, spacelike or causal respectively, at
everyr € I. Letp,qbe two points irM. We say thaty
connects with qif a(a) = p anda(b) = ¢q. Moreover,
a causal curve is future directedf its tangent vector
is future directed at every € I. Let nowa be a future
directed causal curve. @3}1 a(T) = p, the evenp is

thepast endpoinbf the curve, and iilin}) a(T) = g, the
T—

eventq is thefuture endpoinof the curve. If there is no
future/past endpoint, the curve is said tofbrure/past
inextendibleif there are no endpoints, the curve is said
to beinextendible A piecewise differentiable curve’

IDepending on the convention, sometimes the signaturet-
...+) is used instead.

2Sometimes only the zero vector is called null.

3In a similar way, one can define future/past timelike cones, a
future/past lightlike cones.

other interesting set, used in the next sections, which is
nothing but the intersection of the causal future ahd
the causal past of. J(p,q) = J*(p) N J~(q).

We shall also mention the Lorentzian structure inherited
by a submanifold/’ of a Lorentzian manifold M, g).
There is a classification similar to that of the vectors of
T, M. If g5 is the Lorentzian metric restricted to vec-
tor fields inTM’, thenM’ is atimelike submanifoldf
gju- is a Lorentzian metric; apacelike submanifoldi
gju is a Riemannian metric, andlightlike submani-
fold if the bilinear formg,, is degenerate.

1.2 Outline of this paper

The spacetime we are focusing on in this article is de-
fined in [2], and we will refer to it as Carter space-
time. Our interest on Carter spacetime arose from the
fact that it was used as a counterexample, proving that
the strong causality condition in a spacetime cannot be
weakened at the same time as the compactness con-
dition, if one were to characterize globally hyperbolic
spacetimes (see counterexaniplé 3.6). For that reason, a
complete section is left to an analysis of Carter space-
time and its causal behaviour (Sectldn 2). In that sec-
tion we will prove that Carter spacetime is causal (sec-
tion[2.1) but not strongly causal (section]2.2), that the
setJ(p, q) is compact (sectioh 2.3) and, the main re-
sult of this article, that the Lorentzian distance between
some points is infinite (sectidn_2.4, Propositlon]2.1).
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2.1 Carter spacetime is causal

Our aim is to prove that the lightlike curve in figlre 1 is
an endless non-closed causal curve, as it is suggested in
the figure. Let, # 0 be a fixed value. Since all vectors
lyingin S = {t = ¢} are spacelike, the causal cone of

) ) any pointp in S does not intersect. This means that

Y lightlike curve the tangent vector of any future directed causal curve
passing througld' must have an increasimgcoordinate,

and thus the curve cannot be closed unless it reaches
t = 0. Therefore, we can restrict our search to the sur-
faceSy, = {t = 0}, which is a lightlike surface as seen
above.

Figure 1: The lightlike hypersurface So = t = 0.

The global hyperbolicity condition, which is the strongest
in the causal ladder, is crucial in the Singularity theo-
rems of General Relativity, and its various equivalent
definitions are the motivation of this work. For that rea-
son, it will be addressed in more detail in secfién 3. Fi-
nally, as a consequence of our result, we will discuss
some points and open questions related to the subject of , , NG
global hyperbolicity in sectionl4. g(a(7), /(7)) = =(a5(r))" = 0

Foracurvex(r) = (0, aa(7), as(7)) in Sy to be causal,
it must satisfy the condition

and therefore,(7) = 0. Consequently, up to reparametriza-
2 Carter Spacetime tions, the causal curves that could be closed on the sur-
face Sy would be of the form:
The differentiable manifold/ on this particular space-
time is defined as a quotient spaceRsf diffeomorphic (1) = (0, as(7), k).
toR x T2, with the following identifications:

(ty,2z) ~1 (Lyz+1), Let us prove that the curve(r) = (0, az(7),0) start-
(t,y,2) ~2o (t,y+1,z+a), ing at (0,0,0) is not closed —the others can be ob-
with a € (0,1) N (R \ Q). tained by a translation of this one. Assuming that

a future directed piecewise differentiable curve, that is

For every surfacét = o} with ¢, constant, we obtaina ~ 9(a’,9t) > 0, one concludes that, > 0. A convenient
cylinder under the first equivalence relation, and under 'eparametrization leads te(y) = (0, y, 0).

the second equivalence relation we get a torus in which o )

the points(0, 2) are identified tq1, z + ). Thislastset  BY the definition of Carter spacetime, the evgint), 0)
of equivalence classes will be crucial to prove that the has the following equivalent events:

spacetime is causal since, when identifying the edges of
the cylinder after the first identification, the torus twists
a little, so that the closed causal curve keeps turning
around it, without ever closing, as it will be shown in
the next section (see figure 1).

(0,0,0) ~1 (0,0,n) ~2 (0, m,n + am), with
n,m € Z — {0}.

The metric in Carter spacetime is defined by (5ke [2],[10])FOr the curvex to be closed, there must exist a parame-
teryo # 0 such thatx(yo) is in the equivalence class of
ds® = c(t) (dt* — dy?) + 2dtdy — dz*, (0,0,0). That is,(O_, Yo, Q) = (0,_m, n+ am), for some
m, n € Z. But this is impossible sincer = yo # 0

with ¢(t) = (cosh(t)—1)2. The signature for this metric anda is irrational.

is (1,—1,—1) and the time orientation is such that the o
causal vector field, is directed to the future. Notice 2.2 Carter spacetime is not strongly causal
that, if ¢y # 0, the surfaceS = {t = ¢} is spacelike,

since the metric there becomes One of the consequences of being a strongly causal space-

time is that there cannot exist totally or partially impris-
915 = —c(to)dy® — dz?, oned causal curves in a compact set (see for instance [3,

Prop. 3.13]). A causal curve is totally (resp. partially)

with signaturg—, —). By contrast, in the surfacg), = imprisoned in a compact set if once it enters the set it

{t = 0} the metric is degenerate: never leaves it (resp. if the curve leaves the set, it will
continually re-enter it). But the causal curve constructed

95, = —dz* in sectior.2.1L is contained if0} x T2, which is a com-

pact set. Therefore Carter spacetime is not strongly
and the surface is lightlike. causal.
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2.3 The setJ(p, q) is compact in Carter spacetime

Let p, ¢ be two points in Carter spacetime aty ¢,
thet-coordinates op andg, respectively. Since any fu-
ture directed causal curve connectingndg must have

a non-decreasingrcoordinate, we may conclude that
J(p,q) C [tp,tq) x T2, which is compact. Therefore
the closureJ(p, q) is compad, for all p, ¢ in M. This
interesting property was pointed out for the first time in
[5]. It makes of Carter spacetime a counterexample to
the question of whether the conditions of strong causal-
ity and compactness of(p, ¢) for a globally hyperbolic

space could be simultaneously replaced by the weaker

conditions of causality and compactness/gp, ¢) (see
SectiorB).

2.4 The time-separation in Carter spacetime reaches
infinite value

The main result of this paper is presented in the follow-
ing proposition:

Proposition 2.1 There exist at least two pointsand g
in Carter spacetime such that their Lorentzian distance
d(p, q) is infinite.

The arc length functional given in formula (1) for causal

curvesa(r) = (¢(7),y(1),z(7)) in Carter spacetime
becomes:
= [ Vg(a a")dr

= f:j \/c(t(T N ()% =y (7)?) + 2y (1)t (1) — 2/ (7)dr.
2
Our goalis to build a sequence of timelike curyes, },,en
connecting a poing in {¢ = ¢, < 0} to another poing
in {t = t, > 0} in such a way that the lengths of those

curves are not bounded from above. Since Carter space-

time was obtained by the projectidh: R? —; R x T?,

the elements oR? will be denoted with a ~ above
them and their images under the projection without it.
In order to prove Propositidn 2.1 we need some auxil-
iary lemmas:

Lemma 2.2 In Carter Spacetime, for eaghwith ¢, <
0, there exists a future inextendible timelike curye
starting atp and never intersecting, = {t = 0}, such
that L(8) = cc.

Proof.

Letp = (tp, yp, 2p) be a pointin Carter spacetime, with
zp a value in the interval0, 1) andt, < 0. The length
functional [2) over the (not yet projected) culf@sR3
given bya(r) = (t(7), §(7), 2, ), after a reparametriza-
tion of the typet = ¢(7) becomes:

/¢ (1 - 5(0)) + 27/ (1)

4Every closed subset of a compact set is also compact.
Ssincez, = z, andt = ¢ for anyt, we will notuse ~ .

: -10t
:Curve 3
: t

Figure 2: The curve §8 defined in [¢,, 0), in Carter spacetime.

Lett; = 0. For anyt € (t,,0), the radicand irL is a
quadratic polynomial iy’ (t) that reaches its maximum

value atyo'(t) = 7, thus
Jolt) = Smh““;jf;(“ )

Takek € R such thatyy(t,) = y,. Note thatgy(t)
is defined fort < 0. Define over the intervdt,, 0) the

curveB(t) = (t,9o(t), z,). This curve starts gt, which
become in Carter spacetime, and satisfies:

0)- [\ [ |G-

Sincec(t) is posmve forany < 0, itresults thay(5’, B’) =
g(3,9,) = SO S 0 therefore is a future di-

c(t)

rected timelike curve, and it is future inextendible be-
cause%in(l) go(t) = oo . Indeedt never reaches zero so
—

that this curve does not intersefif = {¢t = 0}.

The required curvg in Carter spacetime is obtained by
projecting the curve (see figuréR).

O

Recall that our aim is to construct a sequence of timelike
curves{a, nen CcONnecting a poinp in {t = ¢, < 0}

to another poing in {t = ¢, > 0}. The reasoning above
suggests that the value &f(for an appropriate choice
of 2/ = 0) cannot be bounded for a sequence of curves
{an }nen builtin the following way: if{¢,, } nen is a se-
guence of negative values converging to zero, then for
eachn € N and over the intervdk,, t,], the curvei,
starting atp is equal to3; for ¢ > ¢,,, the curved,, will

be glued to another curve that after a while will reach
{t = 0}. Itis important to note that, while connecting
the pointg andg, due to the identifications of the space-
time (see figurg€l2), we cannot ignore de&oordinate.
That is the reason why we chose a pajwith ¢, > 0
instead oft, = 0.

Lemma 2.3 In Carter spacetime, there exists a sequence
of piecewise differentiable future directed timelike @gv
{an }nen starting at a pointp with t, = —1 < 0 and
endpoints inSy = {¢t = 0}, such thatnhj{}o L(ay)
Q.
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Proof.

Lett, = —1 < 0 be thet-coordinate op and{t, },.cn
be a sequence of valuesl < ¢, < 0 converging to
zero. If go(t) is the function given in[{3), define the

sequence of functiong, (¢) as: 1+m
in(t) = o(t) if —1<t<t,, c
I TN At =) +dio(tn) ity <t <0,

for someA,, to be determined. For eagh € N, the
curvean, (t) = (t,9n(t), zp) defined ovef—1,0] is, by
construction, the curvé in Lemmd 2.2, up t@,,. Thus, .
in [—1,t,) it is piecewise differentiable and future di- _'5 ﬁ
rected timelike. Therefore, in the same interval, the pro-

jection«,, of each curve must also be a future directed
timelike curve in Carter spacetime. Moreovéy, con-

nects the poinp = 5(—1) with ¢, = (0,7,(0), z,).
Notice thatg, (t,;) = 9. () = go(tn), and the final 1-vVIt¢
points of &,, and«,, do not coincide due to the iden- c
tifications of points. Finally, since thecoordinate in-
creases, the curve, if timelike, automatically will be fu- s
ture directeﬁ in the entire interval. Figure 3: Graph of the functions 1+ 1(;“” for t < 0.
Thus, it only remains to findl,, such that, for each € may choose:
N, the curven, (t) is timelike overlt,, 0]. For ., to be R R
a timelike curve, the curvé,, must satisfy: 4 = Jo(tn) — [Jo(tn)] — 1
n ﬁn )
~/~/ ~/ _ _ A2
9(an (1), 0 (8) = c(t)(1-A,)+24, > 0, VL € [t?é_)())]' where [z] is the ceiling valué of . For this partic-
Itis easy to show thaE[5) is true if: ular case we may see that both the numerator and the
y ) ) denominator of4,, are negative, hencé,, > 0.
1*\/1(+)c(t)2 <A < 1+\/1(+)c(t)2 To prove thatd,, < D,,,Vn € N, we just need to check
c(t n c(t ’ A
Vt € (ts,0),Vn € N. thatD—” < 1, but this is true since
Equivalently, if: o< An — ([90(ta)] = Goltn) + 1) c(tn) < c(tn)
Y e D, 2[t,] ]
sup | —F—— 2 | < A, < q
t€[tn,0) c(t) an e(t)
14+ /143 —" <1,  Vt, €[-1,0].
e (VIO e [t =10
te(tn,0) c(t)

Therefored,, < D,,,Vn € N.

Clearly we have in one hand that¥1*< is always Finally, L(a) = L(ew|(1,t,]) + L{ani1,, o)) @nd triv-
negative and its supremum is zero, and on the other 1@ly lim L(an i, ) = 0. In consequence,

hand, smcel(—:’;(t) is increasing (see figuié 3),
1
lim L(ap) = lim + cft dt
> L+ /T4ct)?)  14+/1+c(t,)? noee nee
tegln,o) c(t) B c(tn) ' -

The functione(t) is strictly positive for allt < 0, thus

) Now we have the tools needed to prove the proposition:
W > ((t ~. Therefore, if we choose the con- P Prop

stants{ A, }cx verilying0 < 4, < D, = = t Vi € Proof of Propositiof . ZJ1

N, the curve will always be timelike. For mstance we The projected sequence of curvgs, },en in Lemma
[2.3 over Carter spacetime leads to a sequence of points

6Because the projected vectar§ (t,, ) anda/, (1) both belong
to the same timelike cone. "The closest integer greater or equakto
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{gn}nen = {an(0)},en Overthe compact sgb} x T2.

exhaustive study of singularity theorems, and references

Since any sequence of points in a compact metric spacetherein). This name comes from the solution of the wave
admits a converging subsequence, we can assume thaequation for aj—function source at a poing, since

there exists a subsequen@g,(,) }nen Of {gn fnen that
converges to a point in {0} x T2. Letq be a pointin
the chronological futurd™(¢’) of ¢’. The intersection
U = 1-(q) N ({0} x T?) is an open set of0} x T?
containingg’ (see Figurél4).

t

Gotoz=z,+ta

Qo (m)

q%’(no)

Figure 4: The setU and the curvesy,,.

As a consequence, there exists a natural numper N
such that for alin greater tham, the pointsy,(,,) are
contained inU. This implies the existence of a future
directed timelike curvey,, that connectsg,,,) andq

for eachm > ng. After a proper reparametrization of
vm, We consider the sequence of future directed time-
like curves resulting from appending the previous two:

{Um}mEN,m>n0 = {'Ym * a@(m)}mEN,m>n07

that is,

if t € [tp,0],

_ Japm(t)
om(t) = { if ¢ € (0,t,]-

Ym (t)7

These curves conneptwith ¢ and using the inverted
triangular inequality (e.g. see [12, Lemma 14.16]) we
have:

P < Gp(m) < ¢ = d(p,q) > d(p,qp(m)) >
L(ag(my), ¥m € N,m > ng.

Finally, by lemmd 2.3,

d(p, q) > n}gnooL(atp(m)) = 0.

3 Characterizations of global hyperbolicity

The notion of global hyperbolicity is crucial in General
Relativity; the Einstein initial condition problem, the
singularity theorems due to Hawking, Penrose or Gan-
non, the theorems related to the mass ath#® cosmic
censor conjecturare all formulated in global hyper-
bolic spacetimes —or neighborhoods— (see [13] for an

in such spacetimes this equation has unique solution.
Moreover, if we restrict our definition to a globally hy-
perbolic neighborhood’, then outsideV — J*(p) N N

the solution vanishes [10, chapter 7]. There exist vari-
ous alternative definitions for global hyperbolicity, that
have been adjusted in recent years. The more clarify-
ing one, due to Geroch, is presented in Definifiod 3.1.
It represents the realistic structure of a globally hyper-
bolic spacetime. As one can see in the definition, that
structure is substantially simplified. The idea is that,
in a globally hyperbolic spacetime, the knowledge of a
hypersurface in an instant of time can determine all the
spacetime:

Definition 3.1 A spacetimg M, g) is globally hyper-
bolic if and only if it admits a Cauchy hypersurface
3}, that is, a topological hypersurface which is cut only
once by each inextendible timelike curve. Thkhjs
homeomorphic to the foliatidR x X, and eacH¢o } x 2

is a Cauchy hypersurface.

An achronal set is a set in which there are no points
chronologically connected —i.el;"(S) N S = (. For
instance, the sef; in Carter spacetime is achronal. The
domain of dependencB(S) of a closed achronal set

S is the union of the future and past domains of de-
pendence, denoted ly* (S) and D~ (.5) respectively.
These last two sets are defined as the sets of events satis-
fying that every future/past directed inextendible time-
like curve through the event intersecis(see [9] for
more details). For example, any signal senfio(S)
must be registered ifi, and given the appropriate infor-
mation about initial conditions 01§, one will be able

to predict what happens at any pointint(S). Sim-

ilar properties can be deduced fbr (S). Summariz-
ing, D(S) is the complete set of events for which all
conditions should be determined by the knowledge of
conditions onS. Then, a Cauchy hypersurfagecan
also be defined as a closed achronal set Witlx) be-

ing all the spacetime. Thus, the entire future and past
history of the universe can be predicted from conditions
at the instant of time represented By Even more

is a 3-dimensional, topological, closed, spacelike and
C°-submanifold which supplies information about an
instant of time of the universe. Observe that the foli-
ation provides a global tim¢ for which f = constant

is a Cauchy hypersurface. There are good reasons to be-
lieve that physically realistic spacetimes must be glob-
ally hyperbolic. But if not, one can always restrict the
study to a globally hyperbolic neighborhood.

However, the first definition for globally hyperbolic space-
times was formulated in a completely different way by
Leray in 1952 (see_[11]). To introduce this definition,
we need some previous concepts:d&p, ¢) be the set

of piecewise differentiable future directed causal curves
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from p to ¢, up to a reparametrization. Obviously, if
q & JT(p), thenC(p,q) = 0. We can define a topol-
ogy overC(p, q), called theC°-topology by taking the
open sets as the union of sets of the type:

OU)={yeCp,q) :vCUj},

whereU is an open setiM. In other wordsO(U) con-
sists on all causal curves formto ¢ which lie entirely
within U. Now we are able to introduce the second def-
inition due to Leray:

Definition 3.2 A spacetimeg M, g) is globally hyper-
bolic if and only if it isstrongly causaland, for each
p,q € M the space of causal curves that connect them
is compact under thé°-topology.

The equivalence between Definition 3.1 3.2 was
proven in a known theorem by Gerochi ([9]). Those def-
initions yield a third one:

Definition 3.3 A spacetimeg M, g) is globally hyper-
bolic if and only if it isstrongly causaland for any two
pointsp, ¢ € M the setJ(p, q) is compact.

The equivalence between all these three definitions is
providedin[14, pp. 205-209]. Aditionally, in[[4, lemma
4.29] it was proven that, in definitidn_3.3, it is possi-
ble to simplify the compactness condition.6fp, ¢), to
compactness of its closutEp, q).

Theorem 3.4 A spacetimé)M, g) is globally hyperbolic
if and only if it is strongly causal and for any two points
p,q € M the setl(p, q) is compact.

Under the conditions of TheordmB.4, it results g, ¢)

is closed. Moreover, the definition 8.3 has been simpli-
fied a little more in another way, proving that compact-
ness ofJ(p, ¢) plus causality implies strong causality,
that is:

Theorem 3.5 [1]] A spacetimg M, g) is globally hyper-
bolic if and only if it iscausaland for any two points
p,q € M the set/(p, q) is compact.

The key in the proof of this theorem is that causality plus
compactness of (p, ¢) implies simple causality, which

is a stronger condition than strong causality (see [3]).
But it is not possible to relax the condition of strong
causality to just causality in TheorémB.4, as Carter Spac
time proves (see Sectiénh 2):

Counterexample 3.6 Carter spacetime is causal and
for eachp,q € M the setJ(p, q) is compact, but the
spacetime is not globally hyperbolic.

There exists one last alternate definition of global hy-
perbolicity:

Definition 3.7 A spacetimeM, g) is globally hyper-

bolic if and only if it isstrongly causaland for any met-

ric ¢ = Qg, Q > 0 conformal to the original one, the
Lorentzian distancd’ associated tg’ is finite: d'(p, ¢) <
00, Vp,q € M.

With this background in mind, it is interesting to ask
if, in last definition[3.¥ and in definition_3.2, it would
be possible to relax the condition of strongly causal to
just causal. As a matter of fact, it has been shown that
since it is possible to do it in definitign 3.3, it is inmedi-
ately possible to do it in definitidn 3.2 (see [3]). For the
other case, we tried to find a counterexample in Carter
spacetime, because it seemed to be the best candidate
due to the literature. Indeed, this spacetime is very sim-
ple and, since it is a foliation of compact manifolds, if
the time separation or Lorentzian distance was finite for
the metricg, then it would also be finite for every met-
ric conformal to the original. However, as proven in
Propositio 211, Carter spacetime does not work as a
counterexample. In any case, this result is interesting
per seand yields some implications and ideas for alter-
nate approaches described in the following section.

4 Conclusion and open questions

The importance of global hyperbolicity condition in Gen-

eral Relativity has been justified in the previous section.

Obviously, in order to have a better knowledge of this

condition, it is required to understand the existing char-

acterizations and work on them. Although the question
we tried to solve remains open to our dissatisfaction,

working on this problem has helped us understand bet-
ter the issue and find possible alternate solutions of the
problem. We recall here the open question:

Open Question 4.11s it possible, in Definition 317, to
relax the condition of strong causality to causality?

The first attempt to answer this question was to find a
counterexample, and we chose Carter spacetime as a
candidate because of previous results about it. We could
continue working in that direction; the idea would be
to find another causal but not strongly causal spacetime
(maybe 3-dimensional, maybe not) with compact hyper-
surfaceqt = ¢y}, such thatif the distance is finite in the
metric between every two points, it will stay finite in
any conformal metric to the original. Carter spacetime
with slight modifications could supply the desired coun-

é_erexample. This approach could be the easiest, but it is

necessary to avoid the curyedefined in Lemma2]2,

or to avoid the possibility of using the curyeto con-
nect two points with a timelike curve of infinite length,
always having in mind that the spacetime should remain
causal and not become strongly causal in the process. If
this idea does not work, maybe a new construction of
a 3-dimensional spacetime would be necessary, which
could be a harder task. Indeed, here again we need to
be mindful of the fact that the structure of the causal
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cones should not give rise to a curve lik@r the curves
resulting from our construction. It could also happen
that the wanted spacetime needs to be 4-dimensional or
more, because lower dimensions would not work. Of
course, searching for such counterexample and not find-
ing it could imply that it is possible, in fact, to give a
positive answer to questign 4.1. In both cases, a good
understanding of the Theory of Causality and all the
conditions in the causal ladder is required, as it will be
argued below.

Let us review Definitioi.3]7. On one hand, apart from
the strong causality condition, a condition on the set of
conformal metrics of the spacetime is imposed. This
condition on the conformal metrics says that the finite-

perbolicity, and how could it be replaced by causal con-
dition.

Observe also that, while weakening the condition of strong
causality in Definitio 313, it was proven that under the
new conditions given in that definition, causality sim-
plicity holds on the spacetime, and this is a stronger con-
dition than strong causality. In the causal ladder there
are four more causal conditions between strong causal-
ity and global hyperbolicity (see for example [3]). Thus,

if we were able to prove that causal condition together
with finite distance in any conformal metric to the given
metric implies any of those four conditions, the desired
result would follow. Nevertheless, there is also an al-
ternate causal ladder, callesbcausality which was in-

ness of the distance is invariant under conformal changestended to refine the standard causal ladder but resulted

of the metric, if the spacetime is globally hyperbolic.
One has to bear in mind that in a spacetime it is equiv-
alent to study the causal behaviour of it and the confor-
mal properties of the metric. This is because any space-
time (M, g) and the manifold// endowed with a metric
conformal tog, (M, Q2g) with @ > 0, share the light-
like vectors at each point; consequently, both space-
times have the same light cones at each point. More-
over, if V* is the Levi-Civita connection associated to
(M, e*fg), beingQ = €2/ the conformal factor of the
metric, then:

ViV = VxY + X(f)Y + V()X — g(X,Y)Vf

Observe that when taking = Y = o' a lightlike
tangent vector field associated to a lightlike geodesic
a in (M, g), one concludes that is a lightlike pre-
geodesic i M, Qg), which can be reparametrized to a

instead in a new hierarchy of spacetimes, with some el-
ements in common with the old onel([3], [6]). Since the
idea of isocausality was to compare spacetimes in the
same standard causality level, this could perhaps lead
us to a proof of our thesis. In this context, it would be
intereseting to find out if the finiteness of the Lorentzian
distance is invariant under isocausality, which as far as
we know, has not been studied until now.

Summarizing, the results presented on Carter spacetime
have opened the way to a better understanding of how
one should approach questfonl4.1. On one hand there is
the search of a counterexample. As argued, this coun-
terexample could be either a modification of Carter space-
time or a different space, but in any case the resulting
causal structure of the built spacetime should not allow
the existence of a curve with the propertiesalefined

in Lemma[2.2, that could render an infinite Lorentzian

geodesic in that space. Therefore, the conformal struc- distance between two given points, and should not be
ture of a spacetime determines the trajectories of pho- Strongly causal. On the other hand, there remains the
tons and so, as said, it is equivalent to study the causal Possibility of having a positive answer to our question.
behaviour and the conformal structure of a spacetime. FOr either path, some of the main points to consider
On the other hand, it is important to bear in mind that would be th(_e conformal struc_ture ofaspacgtlme, adeeper
the strong causality condition causes the spacetime to Understanding of the behaviour of spacetimes that sat-
have a very good behaviour in some cases. For ex- |§fy the. strong causality condition, or any of the con-
ample, in the class of strongly causal spacetimes, the ditions m_the causal ladder between that one gnd global
Lorentzian distancé determines the metric (séé [4, Th. hyperbolicity, and the study of the more recentisocausal-
4.17]). Also, the Alexandrov topology, which basis is ity Iadde_r and its implications. In any case, the (p05|t|ye
the intersection of the chronological sets of a spacetime O négative) answer to the thesis offered in our question
and is normally coarser than the topology of the man- wo_uld be_of interest because it yv_ould provide a new
ifold, coincides with the topology of the manifold in ~ Point of view on global hyperbolicity, and a step for-

a strongly causal spacetimé ([10, pp. 196-197]). An- ward in the under_standlng of the behaviour of globally
other example is that, since a strongly causal spacetime Nyperbolic spacetimes would be taken.

satisfies the future and past distinguishing condition, a
point is uniquely determined by its chronological past
or future, that is,I™(p) = I (q) or I=(p) = I (q)

if and only if p = ¢. Moreover, the limit curve of a  Our sincere acknowledgment goes to Pr. J.M.M. Sen-
sequence of curves in such spacetimes, if it exists, coin- ovilla for his input and constructive feedback in the writ-
cides with the convergence of curves in thi&topology ing of this paper.

([4, Proposition 3.34]). These are some examples of the
good behaviour in a strongly causal spacetime. There-
fore, it is important to make a careful study of how and
when strong causality condition is used in the proof of
definition[3.T viewed as a characterization of global hy-
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