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Abstract

In this work we will focus on the causal character of Carter Spacetime (see [2],[10]). The
importance of this spacetime is the following: for the causally best well behaved spacetimes
(the globally hyperbolic ones), there are several characterizations or alternative definitions.
In some cases, it has been shown that some of the causal properties required in these char-
acterizations can be weakened. But Carter spacetime provides a counterexample for an
impossible relaxation in one of them. We studied the possibility of Carter spacetime to be a
counterexample for impossible lessening in another characterization, based on the previous
results.
In particular, we will prove that the time-separation or Lorentzian distance between two
chosen points in Carter spacetime is infinite. Although this spacetime turned out not to be
the counterexample we were looking for, the found result is interestingper seand provides
ideas for alternate approaches to the possibility of weakening the mentioned characteriza-
tion.
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Resumen

En esta investigación nos enfocamos en el carácter causal del espaciotiempo de Carter(ver
[2],[10]). Este espaciotiempo es importante por la siguiente razón: para los espaciotiem-
pos con un comportamiento causal óptimo, es decir, los globalmente hiperbólicos, existen
varias caracterizaciones o definiciones alternativas. En algunos casos se ha demostrado que
ciertas condiciones de causalidad requeridas en tales caracterizaciones pueden relajarse.
Pero el espaciotiempo de Carter nos da un contraejemplo que hace imposible la relajación
en una de ellas. Basándonos en estos resultados previos, estudiamos la posibilidad de que
el espaciotiempo de Carter sea también un contraejemplo para otra caracterización.
En particular, demostraremos que la separación temporal o distancia Lorentziana entre dos
puntos del espaciotiempo de Carter es infinita. Si bien este espaciotiempo resultó no ser
el contraejemplo buscado, la conclusión es de por sí interesante y aporta ideas alternativas
para estudiar la posibilidad o no de rebajar la condición en la caracterización mencionada.

Palabras Clave.teoría de causalidad, hiperbolicidad global, espaciotiempo de Carter.

1 Introduction

In the intersection between General Relativity and Lorent-
zian Geometry there is an interesting theory, called the
Theory of Causality, which studies the causal relations
between points by analyzing the behaviour of the causal
curves in a spacetime both locally and globally. We
will focus our attention on the causal structure of Carter
spacetime (see [2],[10]) and on the alternate characteri-
zations for the causally best well-behaved spacetimes in
the causal ladder: the globally hyperbolic spacetimes.

In this section, we will introduce some basic notation
and conventions in Lorentzian geometry and an outline
of this paper. We will not state any of the definitions and
properties in Theory of Causality since, if interested,
one can find an excellent review on the last advances on
Theory of Causality in [3], where all the required defi-
nitions, the causal conditions and the interplay between
them are carefully studied. It is worth mentioning that
a new and interesting ordering of spacetimes has been
recently carried out by García-Parrado and Senovilla in
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[6],[7], and refined by García-Parrado and Sánchez in
[8].

1.1 Notation and conventions

In this article, aspacetime(M, g) is a Haussdorf, para-
compact, (space) orientable, time orientable, connected
and differentiable manifold of dimensionn ≥ 2, to-
gether with a non-degenerate 2-covariant tensor fieldg
of signature1 (+ − . . .−). A point p in a spacetime is
usually calledan event. TheLorentzian metricg over
a spacetime ensures the existence of a unique torsion-
free (∇xY − ∇Y X = [X,Y ]) connection or covariant
derivative, theLevi-Civita connection∇ on M , under
which the metricg is covariantly constant (∇g = 0).
It also allows to define the causal character of a vec-
tor v ∈ TpM : it is timelike if gp(v, v) > 0; spacelike
if gp(v, v) < 0; lightlike if gp(v, v) = 0 andv 6= 0;
causalif it is timelike or lightlike, andnull 2 if it is light-
like or the zero vector. At each pointp of a Lorentzian
manifold(M, g), i.e. a differentiable manifold endowed
with a Lorentzian metric, the set of all causal vectors in
the tangent spaceTpM is called thecausal coneoverp.
This cone has two connected components. A time ori-
entation atp is the choice of one of the connected com-
ponents, which will be calledthe future causal cone;
obviously, the other component is called thepast causal
cone3. Moreover, a spacetime istime orientableif and
only if there exists a globally defined (non-unique) time-
like vector fieldV , which will give the future direc-
tion of the spacetime. In that case, any causal vector
v ∈ TpM is future directedif and only if gp(v, Vp) > 0
and past directedif and only if gp(v, Vp) < 0. The
causal cones defined on a spacetimeM are a subset of
TpM at each pointp. Recall that globally the metric of
a spacetime changes from point to point and that causes
the cones to twist when moving through it.

Let α be a differentiable curve withdα 6= 0 (i.e., with
non-vanishing tangent vector fieldα′) defined on an in-
tervalI ⊂ R, beingτ ∈ I the parameter of the curve.
The end valuesa andb of the interval may be infinity,
that is−∞ ≤ a < b ≤ ∞. The curvea is timelike,
lightlike, spacelikeor causalif its tangent vectora’ is
timelike, lightlike, spacelike or causal respectively, at
everyτ ∈ I. Let p,qbe two points inM. We say thatα
connects pwith q if α(a) = p andα(b) = q. Moreover,
a causal curveα is future directedif its tangent vector
is future directed at everyτ ∈ I. Let nowα be a future
directed causal curve. Iflim

τ→a
α(τ) = p, the eventp is

thepast endpointof the curve, and iflim
τ→b

α(τ) = q, the

eventq is thefuture endpointof the curve. If there is no
future/past endpoint, the curve is said to befuture/past
inextendible; if there are no endpoints, the curve is said
to beinextendible. A piecewise differentiable curveα′

1Depending on the convention, sometimes the signature(− +
. . .+) is used instead.

2Sometimes only the zero vector is called null.
3In a similar way, one can define future/past timelike cones, and

future/past lightlike cones.

is said to betimelike, lightlike, spacelikeor causal if
in each differentiable pieceα′ is a timelike, lightlike,
spacelike or causal curve respectively, and the two lat-
eral tangent vectors at each break lie in the same causal
cone. From now on, if it is not specified, a curve will
be piecewise differentiable. Thelengthover a space-
time of a piecewise differentiable timelike, lightlike or
spacelike curveα(τ) between two pointsp = α(a) and
q = α(b) is defined as:

L(α) =

∫ b

a

√

|g(α′(τ), α′(τ))|dτ. (1)

Let C(p, q) be the set of all future directed piecewise
differentiable causal curves connectingp with q. The
Lorentzian distanceor time separation between the points
p andq on a Lorentzian manifold(M, g) is defined as:

d(p, q) = sup
α∈C(p,q)

L(α)

Let now(M, g) be a spacetime andp ∈ M . Thechrono-
logical future ofp, denoted byI+(p), is defined as the
set of points inM that can be connected withp by a
(piecewise differentiable) past directed timelike curve.
Thecausal future ofp, denoted byJ+(p), is defined as
the set of points inM that can be connected withp by
a (piecewise differentiable) past directed causal curve,
plus p. The chronological pastI−(p) and causal past
J−(p) are defined in an analogous way. There is an-
other interesting set, used in the next sections, which is
nothing but the intersection of the causal future ofp and
the causal past ofq: J(p, q) = J+(p) ∩ J−(q).

We shall also mention the Lorentzian structure inherited
by a submanifoldM ′ of a Lorentzian manifold(M, g).
There is a classification similar to that of the vectors of
TpM . If g|M ′ is the Lorentzian metric restricted to vec-
tor fields inTM ′, thenM ′ is a timelike submanifoldif
g|M ′ is a Lorentzian metric; aspacelike submanifoldif
g|M ′ is a Riemannian metric, and alightlike submani-
fold if the bilinear formg|M ′ is degenerate.

1.2 Outline of this paper

The spacetime we are focusing on in this article is de-
fined in [2], and we will refer to it as Carter space-
time. Our interest on Carter spacetime arose from the
fact that it was used as a counterexample, proving that
the strong causality condition in a spacetime cannot be
weakened at the same time as the compactness con-
dition, if one were to characterize globally hyperbolic
spacetimes (see counterexample 3.6). For that reason, a
complete section is left to an analysis of Carter space-
time and its causal behaviour (Section 2). In that sec-
tion we will prove that Carter spacetime is causal (sec-
tion 2.1) but not strongly causal (section 2.2), that the
setJ(p, q) is compact (section 2.3) and, the main re-
sult of this article, that the Lorentzian distance between
some points is infinite (section 2.4, Proposition 2.1).
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Figure 1: The lightlike hypersurface S0 = t = 0.

The global hyperbolicity condition, which is the strongest
in the causal ladder, is crucial in the Singularity theo-
rems of General Relativity, and its various equivalent
definitions are the motivation of this work. For that rea-
son, it will be addressed in more detail in section 3. Fi-
nally, as a consequence of our result, we will discuss
some points and open questions related to the subject of
global hyperbolicity in section 4.

2 Carter Spacetime

The differentiable manifoldM on this particular space-
time is defined as a quotient space ofR3 diffeomorphic
toR× T2, with the following identifications:

(t, y, z) ∼ 1 (t, y, z + 1),

(t, y, z) ∼ 2 (t, y + 1, z + a),

with a ∈ (0, 1) ∩ (R \Q).

For every surface{t = t0} with t0 constant, we obtain a
cylinder under the first equivalence relation, and under
the second equivalence relation we get a torus in which
the points(0, z) are identified to(1, z+ a). This last set
of equivalence classes will be crucial to prove that the
spacetime is causal since, when identifying the edges of
the cylinder after the first identification, the torus twists
a little, so that the closed causal curve keeps turning
around it, without ever closing, as it will be shown in
the next section (see figure 1).

The metric in Carter spacetime is defined by (see [2],[10]):

ds2 = c(t)
(

dt2 − dy2
)

+ 2dtdy − dz2,

with c(t) = (cosh(t)−1)2. The signature for this metric
is (1,−1,−1) and the time orientation is such that the
causal vector field∂t is directed to the future. Notice
that, if t0 6= 0, the surfaceS = {t = t0} is spacelike,
since the metric there becomes

g|S = −c(t0)dy
2 − dz2,

with signature(−,−). By contrast, in the surfaceS0 =
{t = 0} the metric is degenerate:

g|S0
= −dz2

and the surface is lightlike.

2.1 Carter spacetime is causal

Our aim is to prove that the lightlike curve in figure 1 is
an endless non-closed causal curve, as it is suggested in
the figure. Lett0 6= 0 be a fixed value. Since all vectors
lying in S = {t = t0} are spacelike, the causal cone of
any pointp in S does not intersectS. This means that
the tangent vector of any future directed causal curve
passing throughS must have an increasingt-coordinate,
and thus the curve cannot be closed unless it reaches
t = 0. Therefore, we can restrict our search to the sur-
faceS0 = {t = 0}, which is a lightlike surface as seen
above.

For a curveα(τ) = (0, α2(τ), α3(τ)) in S0 to be causal,
it must satisfy the condition

g(α′(τ), α′(τ)) = −(α′
3(τ))

2 ≥ 0

and thereforeα′
3(τ) = 0. Consequently, up to reparametriza-

tions, the causal curves that could be closed on the sur-
faceS0 would be of the form:

α(τ) = (0, α2(τ), k).

Let us prove that the curveα(τ) = (0, α2(τ), 0) start-
ing at (0, 0, 0) is not closed —the others can be ob-
tained by a translation of this one. Assuming thatα is
a future directed piecewise differentiable curve, that is
g(α′, ∂t) > 0, one concludes thatα′

2 > 0. A convenient
reparametrization leads toα(y) = (0, y, 0).

By the definition of Carter spacetime, the event(0, 0, 0)
has the following equivalent events:

(0, 0, 0) ∼1 (0, 0, n) ∼2 (0,m, n+ am), with
n,m ∈ Z− {0}.

For the curveα to be closed, there must exist a parame-
tery0 6= 0 such thatα(y0) is in the equivalence class of
(0, 0, 0). That is,(0, y0, 0) = (0,m, n+ am), for some
m, n ∈ Z. But this is impossible sincem = y0 6= 0
anda is irrational.

2.2 Carter spacetime is not strongly causal

One of the consequences of being a strongly causal space-
time is that there cannot exist totally or partially impris-
oned causal curves in a compact set (see for instance [3,
Prop. 3.13]). A causal curve is totally (resp. partially)
imprisoned in a compact set if once it enters the set it
never leaves it (resp. if the curve leaves the set, it will
continually re-enter it). But the causal curve constructed
in section 2.1 is contained in{0}×T2, which is a com-
pact set. Therefore Carter spacetime is not strongly
causal.
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2.3 The setJ(p, q) is compact in Carter spacetime

Let p, q be two points in Carter spacetime andtp, tq
thet-coordinates ofp andq, respectively. Since any fu-
ture directed causal curve connectingp andq must have
a non-decreasingt-coordinate, we may conclude that
J(p, q) ⊂ [tp, tq] × T2, which is compact. Therefore
the closureJ(p, q) is compact4, for all p, q in M . This
interesting property was pointed out for the first time in
[5]. It makes of Carter spacetime a counterexample to
the question of whether the conditions of strong causal-
ity and compactness ofJ(p, q) for a globally hyperbolic
space could be simultaneously replaced by the weaker
conditions of causality and compactness ofJ(p, q) (see
Section 3).

2.4 The time-separation in Carter spacetime reaches
infinite value

The main result of this paper is presented in the follow-
ing proposition:

Proposition 2.1 There exist at least two pointsp andq
in Carter spacetime such that their Lorentzian distance
d(p, q) is infinite.

The arc length functional given in formula (1) for causal
curvesα(τ) = (t(τ), y(τ), z(τ)) in Carter spacetime
becomes:
L(α) =

∫ τ1
τ0

√

g(α′, α′)dτ

=
∫

τ1
τ0

√

c(t(τ))(t′(τ)2 − y′(τ)2) + 2y′(τ)t′(τ)− z′(τ)2dτ.

(2)

Our goal is to build a sequence of timelike curves{αn}n∈N

connecting a pointp in {t = tp < 0} to another pointq
in {t = tq > 0} in such a way that the lengths of those
curves are not bounded from above. Since Carter space-
time was obtained by the projectionΠ : R3 −→ R×T2,
the elements ofR3 will be denoted with a ∼ above
them and their images under the projection without it.
In order to prove Proposition 2.1 we need some auxil-
iary lemmas:

Lemma 2.2 In Carter Spacetime, for eachp with tp <
0, there exists a future inextendible timelike curveβ
starting atp and never intersectingS0 = {t = 0}, such
thatL(β) = ∞.

Proof.

Let p = (tp, yp, zp) be a point in Carter spacetime, with
zp a value in the interval[0, 1) andtp < 0. The length
functional (2) over the (not yet projected) curves5 in R3

given byα̃(τ) = (t(τ), ỹ(τ), zp), after a reparametriza-
tion of the typet = t(τ) becomes:

L (α̃) =

∫ t1

tp

√

c(t)(1 − ỹ′(t)2) + 2ỹ′(t)dt.

4Every closed subset of a compact set is also compact.
5sincez̃p = zp andt̃ = t for anyt, we will not use ∼ .

Figure 2: The curveβ defined in [tp, 0), in Carter spacetime.

Let t1 = 0. For anyt ∈ (tp, 0), the radicand inL is a
quadratic polynomial iñy′(t) that reaches its maximum
value atỹ0

′(t) = 1
c(t) , thus

ỹ0(t) =
sinh(t)(cosh(t)− 2)

3c(t)
+ k. (3)

Takek ∈ R such thatỹ0(tp) = yp. Note thatỹ0(t)
is defined fort < 0. Define over the interval[tp, 0) the
curveβ̃(t) = (t, ỹ0(t), zp). This curve starts at̃p, which
becomesp in Carter spacetime, and satisfies:

L
(

β̃
)

=

∫ 0

tp

√

1 + c(t)2

c(t)
dt >

∫ 0

tp

√

1

c(t)
dt = ∞.

(4)
Sincec(t) is positive for anyt < 0, it results thatg(β̃′, β̃′) =

g(β̃′, ∂t) = 1+c(t)2

c(t) > 0, thereforeβ̃ is a future di-
rected timelike curve, and it is future inextendible be-
causelim

t→0
ỹ0(t) = ∞ . Indeed,t never reaches zero so

that this curve does not intersectS0 = {t = 0}.

The required curveβ in Carter spacetime is obtained by
projecting the curvẽβ (see figure 2).

�

Recall that our aim is to construct a sequence of timelike
curves{αn}n∈N connecting a pointp in {t = tp < 0}
to another pointq in {t = tq > 0}. The reasoning above
suggests that the value ofL (for an appropriate choice
of z′ = 0) cannot be bounded for a sequence of curves
{αn}n∈N built in the following way: if{tn}n∈N is a se-
quence of negative values converging to zero, then for
eachn ∈ N and over the interval[tp, tn], the curveα̃n

starting atp is equal toβ̃; for t > tn, the curveα̃n will
be glued to another curve that after a while will reach
{t = 0}. It is important to note that, while connecting
the pointsp andq, due to the identifications of the space-
time (see figure 2), we cannot ignore dez-coordinate.
That is the reason why we chose a pointq with tq > 0
instead oftq = 0.

Lemma 2.3 In Carter spacetime, there exists a sequence
of piecewise differentiable future directed timelike curves
{αn}n∈N starting at a pointp with tp = −1 < 0 and
endpoints inS0 = {t = 0}, such that lim

n→∞
L(αn) =

∞.
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Proof.

Let tp = −1 < 0 be thet-coordinate ofp and{tn}n∈N

be a sequence of values−1 ≤ tn ≤ 0 converging to
zero. If ỹ0(t) is the function given in (3), define the
sequence of functions̃yn(t) as:

ỹn(t) =

{

ỹ0(t) if − 1 ≤ t < tn,

An(t− tn) + ỹ0(tn) if tn ≤ t ≤ 0.

for someAn to be determined. For eachn ∈ N, the
curveα̃n(t) = (t, ỹn(t), zp) defined over[−1, 0] is, by
construction, the curvẽβ in Lemma 2.2, up totn. Thus,
in [−1, tn) it is piecewise differentiable and future di-
rected timelike. Therefore, in the same interval, the pro-
jectionαn of each curve must also be a future directed
timelike curve in Carter spacetime. Moreover,α̃n con-
nects the point̃p = β̃(−1) with q̃n = (0, ỹn(0), zp).
Notice thatỹn(t−n ) = ỹn(t

+
n ) = ỹ0(tn), and the final

points of α̃n andαn do not coincide due to the iden-
tifications of points. Finally, since thet-coordinate in-
creases, the curve, if timelike, automatically will be fu-
ture directed6 in the entire interval.

Thus, it only remains to findAn such that, for eachn ∈
N, the curveαn(t) is timelike over[tn, 0]. Forαn to be
a timelike curve, the curvẽαn must satisfy:

g̃(α̃′
n(t), α̃

′
n(t)) = c(t)(1−A2

n)+2An > 0 , ∀t ∈ [tn, 0].
(5)

It is easy to show that (5) is true if:

1−
√

1+c(t)2

c(t) < An <
1+

√
1+c(t)2

c(t) ,

∀t ∈ (tn, 0), ∀n ∈ N.

Equivalently, if:

sup
t∈[tn,0)

(

1−
√

1 + c2(t)

c(t)

)

< An <

inf
t∈(tn,0)

(

1 +
√

1 + c2(t)

c(t)

)

, ∀n ∈ N.

Clearly we have in one hand that1−
√
1+c2

c
is always

negative and its supremum is zero, and on the other

hand, since
1+

√
1+c(t)2

c(t) is increasing (see figure 3),

inf
t∈(tn,0)

(

1 +
√

1 + c(t)2

c(t)

)

=
1 +

√

1 + c(tn)2

c(tn)
.

The functionc(t) is strictly positive for allt < 0, thus
1+

√
1+c(tn)2

c(tn)
> 2

c(tn)
. Therefore, if we choose the con-

stants{An}n∈N verifying0 < An ≤ Dn = 2
c(tn)

, ∀n ∈
N, the curve will always be timelike. For instance, we

6Because the projected vectorsα′
n(t

−
n ) andα′

n(t
+
n ) both belong

to the same timelike cone.

Figure 3: Graph of the functions 1±
√

1+c(t)2

c(t)
for t < 0.

may choose:

An =
ỹ0(tn)− ⌈ỹ0(tn)⌉ − 1

tn
,

where⌈x⌉ is the ceiling value7 of x. For this partic-
ular case we may see that both the numerator and the
denominator ofAn are negative, henceAn > 0.

To prove thatAn ≤ Dn, ∀n ∈ N, we just need to check

that
An

Dn

< 1, but this is true since

0 ≤ An

Dn

=
(⌈ỹ0(tn)⌉ − ỹ0(tn) + 1) c(tn)

2|tn|
≤ c(tn)

|tn|
,

and
c(tn)

|tn|
< 1, ∀tn ∈ [−1, 0].

ThereforeAn ≤ Dn, ∀n ∈ N.

Finally,L(αn) = L(αn|[−1,tn]) +L(αn|[tn,0]) and triv-
ially lim

n→∞
L(αn|[tn,0]) = 0. In consequence,

lim
n→∞

L(αn) = lim
n→∞

∫ tn

−1

√

1 + c(t)2

c(t)
dt = L(β) = ∞.

�

Now we have the tools needed to prove the proposition:

Proof of Proposition 2.1

The projected sequence of curves{αn}n∈N in Lemma
2.3 over Carter spacetime leads to a sequence of points

7The closest integer greater or equal tox.
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{qn}n∈N = {αn(0)}n∈N over the compact set{0}×T2.
Since any sequence of points in a compact metric space
admits a converging subsequence, we can assume that
there exists a subsequence{qϕ(n)}n∈N of {qn}n∈N that
converges to a pointq′ in {0} × T2. Let q be a point in
the chronological futureI+(q′) of q′. The intersection
U = I−(q) ∩

(

{0} × T2
)

is an open set of{0} × T2

containingq′ (see Figure 4).

Figure 4: The setU and the curvesγm.

As a consequence, there exists a natural numbern0 ∈ N

such that for allm greater thann0, the pointsqϕ(m) are
contained inU . This implies the existence of a future
directed timelike curveγm that connectsqϕ(m) andq
for eachm > n0. After a proper reparametrization of
γm, we consider the sequence of future directed time-
like curves resulting from appending the previous two:

{σm}m∈N,m>n0
= {γm ∗ αϕ(m)}m∈N,m>n0

,

that is,

σm(t) =

{

αϕ(m)(t, ) if t ∈ [tp, 0],

γm(t), if t ∈ (0, tq].

These curves connectp with q and using the inverted
triangular inequality (e.g. see [12, Lemma 14.16]) we
have:

p ≪ qϕ(m) ≪ q =⇒ d(p, q) ≥ d(p, qϕ(m)) ≥
L(αϕ(m)), ∀m ∈ N,m > n0.

Finally, by lemma 2.3,

d(p, q) ≥ lim
m→∞

L(αϕ(m)) = ∞.

�

3 Characterizations of global hyperbolicity

The notion of global hyperbolicity is crucial in General
Relativity; the Einstein initial condition problem, the
singularity theorems due to Hawking, Penrose or Gan-
non, the theorems related to the mass or tothe cosmic
censor conjectureare all formulated in global hyper-
bolic spacetimes —or neighborhoods— (see [13] for an

exhaustive study of singularity theorems, and references
therein). This name comes from the solution of the wave
equation for aδ−function source at a pointp, since
in such spacetimes this equation has unique solution.
Moreover, if we restrict our definition to a globally hy-
perbolic neighborhoodN , then outsideN −J+(p)∩N
the solution vanishes [10, chapter 7]. There exist vari-
ous alternative definitions for global hyperbolicity, that
have been adjusted in recent years. The more clarify-
ing one, due to Geroch, is presented in Definition 3.1.
It represents the realistic structure of a globally hyper-
bolic spacetime. As one can see in the definition, that
structure is substantially simplified. The idea is that,
in a globally hyperbolic spacetime, the knowledge of a
hypersurface in an instant of time can determine all the
spacetime:

Definition 3.1 A spacetime(M, g) is globally hyper-
bolic if and only if it admits a Cauchy hypersurface
Σ, that is, a topological hypersurface which is cut only
once by each inextendible timelike curve. Then,M is
homeomorphic to the foliationR×Σ, and each{t0}×Σ
is a Cauchy hypersurface.

An achronal set is a set in which there are no points
chronologically connected —i.e.,I+(S) ∩ S = ∅. For
instance, the setS0 in Carter spacetime is achronal. The
domain of dependenceD(S) of a closed achronal set
S is the union of the future and past domains of de-
pendence, denoted byD+(S) andD−(S) respectively.
These last two sets are defined as the sets of events satis-
fying that every future/past directed inextendible time-
like curve through the event intersectsS (see [9] for
more details). For example, any signal sent toD+(S)
must be registered inS, and given the appropriate infor-
mation about initial conditions onS, one will be able
to predict what happens at any point inD+(S). Sim-
ilar properties can be deduced forD−(S). Summariz-
ing, D(S) is the complete set of events for which all
conditions should be determined by the knowledge of
conditions onS. Then, a Cauchy hypersurfaceΣ can
also be defined as a closed achronal set withD(Σ) be-
ing all the spacetime. Thus, the entire future and past
history of the universe can be predicted from conditions
at the instant of time represented byΣ. Even more,Σ
is a 3-dimensional, topological, closed, spacelike and
C0-submanifold which supplies information about an
instant of time of the universe. Observe that the foli-
ation provides a global timef for whichf = constant
is a Cauchy hypersurface. There are good reasons to be-
lieve that physically realistic spacetimes must be glob-
ally hyperbolic. But if not, one can always restrict the
study to a globally hyperbolic neighborhood.

However, the first definition for globally hyperbolic space-
times was formulated in a completely different way by
Leray in 1952 (see [11]). To introduce this definition,
we need some previous concepts: letC(p, q) be the set
of piecewise differentiable future directed causal curves
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from p to q, up to a reparametrization. Obviously, if
q 6∈ J+(p), thenC(p, q) = ∅. We can define a topol-
ogy overC(p, q), called theC0-topology, by taking the
open sets as the union of sets of the type:

O(U) = {γ ∈ C(p, q) : γ ⊂ U} ,

whereU is an open set inM . In other words,O(U) con-
sists on all causal curves formp to q which lie entirely
within U . Now we are able to introduce the second def-
inition due to Leray:

Definition 3.2 A spacetime(M, g) is globally hyper-
bolic if and only if it isstrongly causaland, for each
p, q ∈ M the space of causal curves that connect them
is compact under theC0-topology.

The equivalence between Definition 3.1 and 3.2 was
proven in a known theorem by Geroch ([9]). Those def-
initions yield a third one:

Definition 3.3 A spacetime(M, g) is globally hyper-
bolic if and only if it isstrongly causaland for any two
pointsp, q ∈ M the setJ(p, q) is compact.

The equivalence between all these three definitions is
provided in [14, pp. 205-209]. Aditionally, in [4, lemma
4.29] it was proven that, in definition 3.3, it is possi-
ble to simplify the compactness condition ofJ(p, q), to
compactness of its closureJ(p, q).

Theorem 3.4 A spacetime(M, g) is globally hyperbolic
if and only if it is strongly causal and for any two points
p, q ∈ M the setJ(p,q) is compact.

Under the conditions of Theorem 3.4, it results thatJ(p, q)
is closed. Moreover, the definition 3.3 has been simpli-
fied a little more in another way, proving that compact-
ness ofJ(p, q) plus causality implies strong causality,
that is:

Theorem 3.5 [1] A spacetime(M, g) is globally hyper-
bolic if and only if it iscausaland for any two points
p, q ∈ M the setJ(p, q) is compact.

The key in the proof of this theorem is that causality plus
compactness ofJ(p, q) implies simple causality, which
is a stronger condition than strong causality (see [3]).
But it is not possible to relax the condition of strong
causality to just causality in Theorem 3.4, as Carter Space-
time proves (see Section 2):

Counterexample 3.6Carter spacetime is causal and
for eachp, q ∈ M the setJ(p, q) is compact, but the
spacetime is not globally hyperbolic.

There exists one last alternate definition of global hy-
perbolicity:

Definition 3.7 A spacetime(M, g) is globally hyper-
bolic if and only if it isstrongly causaland for any met-
ric g′ = Ωg, Ω > 0 conformal to the original one, the
Lorentzian distanced′ associated tog′ is finite: d′(p, q) <
∞, ∀p, q ∈ M .

With this background in mind, it is interesting to ask
if, in last definition 3.7 and in definition 3.2, it would
be possible to relax the condition of strongly causal to
just causal. As a matter of fact, it has been shown that
since it is possible to do it in definition 3.3, it is inmedi-
ately possible to do it in definition 3.2 (see [3]). For the
other case, we tried to find a counterexample in Carter
spacetime, because it seemed to be the best candidate
due to the literature. Indeed, this spacetime is very sim-
ple and, since it is a foliation of compact manifolds, if
the time separation or Lorentzian distance was finite for
the metricg, then it would also be finite for every met-
ric conformal to the original. However, as proven in
Proposition 2.1, Carter spacetime does not work as a
counterexample. In any case, this result is interesting
per seand yields some implications and ideas for alter-
nate approaches described in the following section.

4 Conclusion and open questions

The importance of global hyperbolicity condition in Gen-
eral Relativity has been justified in the previous section.
Obviously, in order to have a better knowledge of this
condition, it is required to understand the existing char-
acterizations and work on them. Although the question
we tried to solve remains open to our dissatisfaction,
working on this problem has helped us understand bet-
ter the issue and find possible alternate solutions of the
problem. We recall here the open question:

Open Question 4.1Is it possible, in Definition 3.7, to
relax the condition of strong causality to causality?

The first attempt to answer this question was to find a
counterexample, and we chose Carter spacetime as a
candidate because of previous results about it. We could
continue working in that direction; the idea would be
to find another causal but not strongly causal spacetime
(maybe 3-dimensional, maybe not) with compact hyper-
surfaces{t = t0}, such that if the distance is finite in the
metric between every two points, it will stay finite in
any conformal metric to the original. Carter spacetime
with slight modifications could supply the desired coun-
terexample. This approach could be the easiest, but it is
necessary to avoid the curveβ defined in Lemma 2.2,
or to avoid the possibility of using the curveβ to con-
nect two points with a timelike curve of infinite length,
always having in mind that the spacetime should remain
causal and not become strongly causal in the process. If
this idea does not work, maybe a new construction of
a 3-dimensional spacetime would be necessary, which
could be a harder task. Indeed, here again we need to
be mindful of the fact that the structure of the causal
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cones should not give rise to a curve likeβ or the curves
resulting from our construction. It could also happen
that the wanted spacetime needs to be 4-dimensional or
more, because lower dimensions would not work. Of
course, searching for such counterexample and not find-
ing it could imply that it is possible, in fact, to give a
positive answer to question 4.1. In both cases, a good
understanding of the Theory of Causality and all the
conditions in the causal ladder is required, as it will be
argued below.

Let us review Definition 3.7. On one hand, apart from
the strong causality condition, a condition on the set of
conformal metrics of the spacetime is imposed. This
condition on the conformal metrics says that the finite-
ness of the distance is invariant under conformal changes
of the metric, if the spacetime is globally hyperbolic.
One has to bear in mind that in a spacetime it is equiv-
alent to study the causal behaviour of it and the confor-
mal properties of the metric. This is because any space-
time(M, g) and the manifoldM endowed with a metric
conformal tog, (M,Ωg) with Ω > 0, share the light-
like vectors at each point; consequently, both space-
times have the same light cones at each point. More-
over, if ∇∗ is the Levi-Civita connection associated to
(M, e2fg), beingΩ = e2f the conformal factor of the
metric, then:

∇∗
XY = ∇XY +X(f)Y + Y (f)X − g(X,Y )∇f

Observe that when takingX = Y = α′ a lightlike
tangent vector field associated to a lightlike geodesic
α in (M, g), one concludes thatα is a lightlike pre-
geodesic in(M,Ωg), which can be reparametrized to a
geodesic in that space. Therefore, the conformal struc-
ture of a spacetime determines the trajectories of pho-
tons and so, as said, it is equivalent to study the causal
behaviour and the conformal structure of a spacetime.
On the other hand, it is important to bear in mind that
the strong causality condition causes the spacetime to
have a very good behaviour in some cases. For ex-
ample, in the class of strongly causal spacetimes, the
Lorentzian distanced determines the metric (see [4, Th.
4.17]). Also, the Alexandrov topology, which basis is
the intersection of the chronological sets of a spacetime
and is normally coarser than the topology of the man-
ifold, coincides with the topology of the manifold in
a strongly causal spacetime ([10, pp. 196-197]). An-
other example is that, since a strongly causal spacetime
satisfies the future and past distinguishing condition, a
point is uniquely determined by its chronological past
or future, that is,I+(p) = I+(q) or I−(p) = I−(q)
if and only if p = q. Moreover, the limit curve of a
sequence of curves in such spacetimes, if it exists, coin-
cides with the convergence of curves in theC0-topology
([4, Proposition 3.34]). These are some examples of the
good behaviour in a strongly causal spacetime. There-
fore, it is important to make a careful study of how and
when strong causality condition is used in the proof of
definition 3.7 viewed as a characterization of global hy-

perbolicity, and how could it be replaced by causal con-
dition.

Observe also that, while weakening the condition of strong
causality in Definition 3.3, it was proven that under the
new conditions given in that definition, causality sim-
plicity holds on the spacetime, and this is a stronger con-
dition than strong causality. In the causal ladder there
are four more causal conditions between strong causal-
ity and global hyperbolicity (see for example [3]). Thus,
if we were able to prove that causal condition together
with finite distance in any conformal metric to the given
metric implies any of those four conditions, the desired
result would follow. Nevertheless, there is also an al-
ternate causal ladder, calledisocausality, which was in-
tended to refine the standard causal ladder but resulted
instead in a new hierarchy of spacetimes, with some el-
ements in common with the old one ([3], [6]). Since the
idea of isocausality was to compare spacetimes in the
same standard causality level, this could perhaps lead
us to a proof of our thesis. In this context, it would be
intereseting to find out if the finiteness of the Lorentzian
distance is invariant under isocausality, which as far as
we know, has not been studied until now.

Summarizing, the results presented on Carter spacetime
have opened the way to a better understanding of how
one should approach question 4.1. On one hand there is
the search of a counterexample. As argued, this coun-
terexample could be either a modification of Carter space-
time or a different space, but in any case the resulting
causal structure of the built spacetime should not allow
the existence of a curve with the properties ofβ defined
in Lemma 2.2, that could render an infinite Lorentzian
distance between two given points, and should not be
strongly causal. On the other hand, there remains the
possibility of having a positive answer to our question.
For either path, some of the main points to consider
would be the conformal structure of a spacetime, a deeper
understanding of the behaviour of spacetimes that sat-
isfy the strong causality condition, or any of the con-
ditions in the causal ladder between that one and global
hyperbolicity, and the study of the more recent isocausal-
ity ladder and its implications. In any case, the (positive
or negative) answer to the thesis offered in our question
would be of interest because it would provide a new
point of view on global hyperbolicity, and a step for-
ward in the understanding of the behaviour of globally
hyperbolic spacetimes would be taken.
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