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Abstract

In 1966, F. Rhodes introduced the idea of the fundamentalpyod a group acting on a
topological space. His article contains summarized probfesults and has been studied
since then primarily because the category of transformajiroups is more general than
the category of topological spaces. In this article, a thghostudy of Rhodes’s work is
presented, providing examples to enrich the theory. Dr.e3akhontaldi from the Univer-
sity of Manchester has recently provided a more general pplicable approach Rhodes’s
main theorem. His results are also analyzed here.
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Resumen

En 1966, F. Rhodes introdujo la idea del grupo fundamentahdgrupoG de homeomor-
fismos de un espacio topologicd. Su articulo contiene demostraciones que resumen los
resultados importantes y ha sido estudiado desde entgmiesipalmente debido a que

la categoria de grupo de transformacion es mas general qatdgoria de los espacios
topologicos. En este articulo, un estudio a fondo del trabaj Rhodes se presenta con
ejemplos para enriquecer la teoria. El Dr. James Montalda déniversidad de Manch-
ester ha contribuido recientemente a esta teoria con umeafiords general y aplicable del
teorema principal de Rhodes. Sus resultados también seamabui.

Palabras Clave.Topologia Algebraica, Grupo Fundamental, Accién de Grupo

Introduction Groups Acting on Topological Spaces
The fundamental group of a transformation gréip &) Let G be a group andX be a topological space. We
of a groupG acting on a topological space general-  refer to reader to [2] and [3] for the relevant definitions.
izes the notion of the ordinary fundamental graypX, )
of X by incorporating the action of on X. We will We call the paif X, G) atransformation groufif G acts

discuss in detail some of the results presented by F. Rhodegntinuously onX in the sense below.

[1]in his article “On the Fundamental Group of a Trans- o )

formation Group.” Rhodes’ main result deals with the Definition 1. A group actionof a groupG on a setX
situation in which the structure of the fundamental group 'S @ map

of (X, @) is determined by the structure of (X, z) GxX — X

together with an appropriate action@fon 7y (X, o).

We shall also illustrate the general theory using well-
know actions on topological spaces: Euclidean space, satisfying the following:
regular polygons, spheres, and the torus, on which the
groups of integers, orthogonal matrices, and cyclic groups
act.

(g, ) —g-x

1. For eacly € GG, the mapr — ¢ - x is continuous.

The objective is to provide details in the proofsaswell 2. g1 - (g2 - ) = (91 - g2) - x for all ¢g1,¢2 € G and
as to supplement the theory with concrete examples. reX.
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3. eex = xforallz € X, wheree denotes the identity
element ofG.

It follows thatG acts by homeomorphisms &f. Con-
sider the topological spaceas™ (Euclideann-space),
S™ C E™*! (n-sphere), an®, C E? (regularn-sided
polygon). Consider the groups,, (dihedral group of
order2n) andO,, (n x n orthogonal group). We then
have the following transformation groups:

e (E™ 0,).
[ ] (Sn70n+1).
e (Pn,Dy).

The Fundamental Group

We want to know how to describe topological invariants
associated with a transformation graup, G). In order

to do so, we need to understand how pathsXirare
affected by the action off. Ultimately we will define
equivalence classes of pathsih taking into account
the action ofG, and a binary operation on the set of all
such equivalence classes [1, Sec. 3].

Definition 2. Let (X, G) be a transformation group and
xo be apointinX. Let denote the intervdl, 1] in the
set of real numbers. Givene G, apath of orderg with
base-pointz is a continuous mag: I — X such that

f(0)=2zpandf(1) =g - xo.

All paths in X under consideration will have the same
base-point but the order of the paths can vary. ddra-
position rulefor such paths is defined as follows.

Definition 3. Consider pathg; of orderg; and f; of
ordergs. We define the&eompositiorpath f; + g1 f2 of
orderg, gs by

(fr+ag1fo)(t) =
(fi+g1fo)(t) =

f1(2t)
g1f2(2t = 1)

ifO<t<1/2
if1/2<t<1.

fitg1f2

Figure 1: Composition of pathsfy of order g1 and f2 of order go

Note that( f1+g1.f2)(0) = f1(0) = xo, (fi+g1f2)(1/2) =
f1(1) = g1f2(0) = g1 - xo and (f1 + g1f2)(1) =
g1f2(1) = g1g2 - xo. Figure 1 illustrates the operation
of path composition.

Definition 4. Let f, and f; be paths inX of the same
orderg. A homotopyfrom f, to f; is a continuous
function F : I x I — X such that for allt,s € I,

F(t,0) = fo(t), F(t,1) = f1(¢), F(0,8) = x0, and
F(l,s) =g - xo.

If there exists a homotopy fronfy to f1, we say that
fo and f; arehomotopicand write f1 <, ,) f2. The
usage of this term is justified as follows.

Proposition 5. The relation=<, .y is an equivalence
relation on the set of all paths iX of orderyg.

Proof. We need to show that the relation, ) is re-
flexive, symmetric, and transitive.

Let f be a path of ordey. Consider the mag” de-
fined by homotopy'(¢,s) = f(t) forall t,s € I. We
have F'(0,s) = xo, F(1,8) = g - 2o and F(t,0) =
F(t,1) = f(¢). ThusF is a homotopy fromf to f, so
thatf <(,..,) f, meaning that the relation is reflexive.

If fo <(g,20) f1 there exists a homotopy from f to
f1 as defined above. Consider the m&pefined by

F(t,s) = F(t,1—s). Then we have
F(tvo) = F(tvl) = fl(t)v
E(tvl) = Ft0) = fo(t),
E(Oa S) Zo,
F(1,s) g-xg.

ThereforeF is a homotopy frony; to fy, so the relation
is symmetric.

If fo <(g,20) f1 AN f1 X(44,) f2 then there exists a
homotopyF; from f; to f1 and a homotopys from f;
to fo. Consider the map’ defined by

| Fi(t,2s) if0<s<1/2,
F(t,s) = { Fa(t,2s—1) f1/2<s<1.
Note thatF'(¢t,1/2) = Fi(t,1) = F»(t,0) = fa(¢), so

that the homotopy is well-defined and continuous. Then

(t7 ) - Fl (t7 0) = fO(t)a

(t7 ) = Q(tal) = fQ(t)a

(0’ s) = ( ) = ( = Zo,

F(l,s) = F(1,s) = Fx(1, ) = g .
ThereforeF' is a homotopy frony to fo, so the relation
is transitive. O

We use this equivalence relation to defireenotopy classes
of paths inX with the same order. We denote b ¢]

the equivalence class of a paftof orderg. We define

a binary operatios on homotopy classes based on the
composition rule described in Definition 3:

[f1391] % [f2; 92] = [f1 + 9125 9192]-
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Itis essential to know that this operation is well-defined
on the set of homotopy classes, that is, it depends only *4 f1

on the homotopy classes ¢f and f5.

The set of all equivalence classg§ g] is called the
fundamental groupf the transformation groupX, G)
with base-point, and will be denoted by, (X, z¢, G).

Proposition 6. The setr; (X, o,
operationx is a group.

G) with the binary

Proof. If e is the identity element of the group and
1 denotes the constant map I — {0}, then[1;¢] is
the identity element of (X, 2o, G) since

[fi9]*x[Le] = [f + gL ge] = [f + g z0;9] = [f; 9]
and[Le] x [f;9] = [L+ef;eg] = [vo + f;9] = [f; g
Definef(t) = f(1 —t). Then
(fi9l% 9" Fig™'] = [f+99 ' Figg™ ]
= [f+ e
= [L¢
9 Fg7  x 19l = o7 F+9 97"
= lg ' (f+1)sg 'yl
= [g7'(9D); €]
[1; €]

Thus the inverse elemeff; g™ = [¢7'f;97'] ex-
ists.

For associativity, we are going to use the fact that the op-
erationx is well-defined, and prove this for an element

of each equivalence class. Suppgses [f1; 1], f2 €
[f2; g2, and f3 € [f3; g3]. Then

fi(4) 0<t<1/a
(fi+g1fo)+qrg2fs =< g1f2(4t —1) s <t <1p
g192f3(2t = 1) 12<t<1,
f1(2t) 0<t<1lf
fi+(g1fotagrgafs) =4 gif2(4t —2) 1<t <3/
g192f3(4t —=3) 3a<t <1

Referring to Figure 2, if we want to define a homotopy
between the paths described above it is necessary to de-

limit Regions I, Il and 111

In Region | we have

s+1
0 < t <
— — 4 )
so that "
0 < < 1
S 3F1 S
In Region Il we have
s+1 s+ 2

(3.1) g1f2 (3,1) gig2fs
Region I Region I1 Region I11
Zo g1 - To gi92 - To 919293 - To
® L ¢ >
(0,0) f1 (3,0) 91f2 (%,0) 9192 f3 t

Figure 2: Homotopy between compositions of path€;, f2, and
f3.

so that
0 < 4t—-s—-1 < 1.
Finally, in Region Ill we have
s+ 2
t < 1
4 —_ — )
so that
0 < 4t — s — 2 < 1
2—s
We now consider the homotopy
4t s+1
h (s+1) 0<t=<"
F(t,s)=4 qifo(dt—s—1) =l <<tz
glng?)(élt Ss— 2) sZQStSl

Note thatF'(0, s) =
9192930, Since

f1(0) = zpandF'(1,s) = gi1g2f3(1) =

f1(4) 0<t<1/a
F(t,0) = gufo(dt=1)  la<t<1p
9192f3(2t = 1) 12 <t<1
= ((fi+91f2) + 9192f3) (),
f1(2) 0<t<1j
P(t1) = gifo(4t=2) 1<t <3
g192f3(4t —3) 3a<t<1
= (fit+(91f2+91923))(1).
This proves associativity. O

Consider an equivalence class e] which is a homo-
topy class of a patlf of order the identity element.
Sincece is the identity transformation ok, we have
f(0) = f(1) = =0, so that[f;e] is a homotopy class
of loopswith base-point:y. All such homotopy classes
of loops form the ordinarfundamental group ok with
base-pointzy. We denoted this group by (X, z¢) and
note that it is a subgroup af; (X, g, G). We shall de-
note([\; e] € m1 (X, zo) simply by[)].
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Topological Properties

We will restrict our attention to path-connected spaces,
so that the role of the base-poirg is inconsequential.
Rhodes proves in his first theorem [1] thapiis a (con-
tinuous) path in X fromeg to x1, then the map

Px: 7T1(X,(E0,G) - 7T1(X,(E1,G)

[fs 9l —— [p+ [ + 90
is an isomorphism. More generally, a pair of mappings
(o, 9): (X,G) — (Y, H)

in whichy : X — Y is acontinuous map and: G —
H is a group homomorphism induces a homomorphism
(¢, 1)+ of fundamental groups [1, Sec. 5]:

(‘Pﬂ/’)*: 7T1(X, IOvG) - 7T1(Ya y07H)

[f; 9] ——— [p(f);(9)].

We say that the transformation grougs, G) and(Y, H)
have the samkeomotopy typé there exist pairs of map-

pings
() (X,G) —
(@ ¢): (V,H) — (X,G)

such thaty’p and ¢’ are homotopic to the identity
maps ofX andY, respectively, and) and)’ are iso-
morphisms. Rhodes proves that the fundamental group
of a transformation group is an invariant of the homo-
topy type of its transformation group [1, Sec. 5].

(Y, H)

Relationship betweenr (X,x0,G) and 71 (X,xo)
Let [A] € m(X,z0) and[f;g] € m(X,z0,G). Ob-
serve that
[figl* Nelx g7 Fr97 ']

(Ufsgl % Nsel) x g~ Fi97 1]
[F+9Xgelx g~ Fi97 "]
[f+9X+g9 " fig9™ "]
[f+9)+ fiel.

This establishes that, (X, ) is anormalsubgroup of
st (X, Zo, G)

Let us consider the inclusion map

7 Wl(X,l'o);’Wl(XaanG)

such thati([A]) = [\] = [X;e], which is an injective
homomorphismrfionomorphish Let

p: 7T1(X,,T0,G)

be the map([f;g]) = g, which is a surjective homo-
morphism épimorphisn

-G

Definition 7. [4, Chap. 7] Anexact sequencis a se-
guence of objects (e.g. vector spaces, groups) and mor-

Note that Inf:) = ker(p) = 71 (X, z0) so that we have

an exact sequence

(X, 20) > m (X, 20, G) ¢ @
in whichi is a monomorphism andis an epimorphism.
Such an exact sequence is known ashart exact se-
quencelt follows [2, Chap. 3] that thguotient group

7T1(X,,T0,G)/7T1(X,.T0)

is isomorphic toG.

In order to obtain a more explicit relationship between
the fundamental groups; (X, z¢, G) and 71 (X, zo),

we need to be able to relate loopsiinbased at:; with
general paths of order[1, Sec. 9].

Preferred Paths

Definition 8. The transformation groufX, G) admits
a family of preferred pathsk, | ¢ € G} atz ifitis
possible to associate to eaghe G a pathk, in X in
such a way that:

. Forallg € G, k4(0) = g -z andk,(1) = xo.

2. The pathk, associated with the identity element
e € G is constant.

3. For allgy, g2 € G the pathkg, 4, is homotopic to

glkgz + k!]l'

If G is atopological group thenG acts on itself by
homeomorphisms via translations. A family of preferred
paths{h, | ¢ € G} at the identity element € G then
induces a family{k, | ¢ € G} of preferred paths at
zo € X asfollows:ky(t) = hy(t) - zo, Vt € 1.[1, Sec.

9]

The existence of a family of preferred paths leads to
a more explicit relationship between both fundamental
groups,m (X, zo) andw1 (X, zg, G). For eacty € G,
we have an automorphisfi, of 71 (X, z¢) defined by

Kgl 7T1(X,$C0) _— 7T1(X,.T0)
N —— [kg + gA + k).
Forg, g2 € G we have

Kgl (ng([A])) Kgl([@'l’g?)"l’km])

[H+91(E+g2)\ +kgy) + kgl]
[kgl + g1kg, + 91922 + gikg, + kgl]'

phisms between them (e.g. linear maps, homomorphismsgince the composition rule is well-defined on homo-
such that the image of each morphism in the sequence topy classes of paths, we can take any representative of
is equal to the kernel of the next morphism in the se- the equivalence class. Recalling that,, + k&, is ho-
guence. motopic tok,, ,,, we have thak,, + g1 k,, is homotopic
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— g1 - Zo

gig9z2 - To

Figure 3: Automorphism induced by kg, , kg,

t0 kg g, Thusky, + g1kg, +g192A + g1kg, + kg, ~a,
Egigs + G192 + kg, g,- Thus we have

Kg, (Kqg, ([A)

[kglgz + 9192)\ + kglgz]
= K!hgz([)‘])v

and soKy, o K4, = K4, 4,. This automorphismis illus-
trated in Figure 3.

Thus we see that the mgp— K, defines a homomor-
phism

K: G — Aut(m (X, x0)) 2

from G into the group Autr (X, o)) of automorphisms
of m (X, ) [1, Sec. 9].

Let us now consider the product sgt( X, ;o) x G of all
ordered pair§[\], g) where[\] € 71 (X, z¢) andg € G.

Definition 9. [2, Chap. 5] Given a groug that acts
on a groupH by group automorphism vig: G —
Aut(H), thesemidirect productiroup, denoted by

H x, G (or simply H x G) is the group whose under-
lying set is the product sef x G, but whose group
operation is defined by

(h1,91)(h2,g2) = (h1p(g1)(h2), g192)

forg1,92 € Gandhy,hy € H.

Thus a family of preferred paths allows us to form the

semidirect product group
(X, 29) X G
in which we have the group operation
(Ml g1)([A2], 92) = (M1 + K, (A2)], 9192)
forany ([A1],91), ([A2], g2) € m1 (X, x0) x G.
Rhodes’s Theorem

We are going to use the semidirect group X, xo) x G

in order to obtain an explicit relation between the fun-

damental groups; (X, zo) andm (X, zg, G).

Theorem 10. Suppose thatX, G) admits a family of
preferred paths aty. Then the map

(b: 7T1(X,$C0,G) — 7T1(X,$C0) x G

159 —— ([f + k). 9)

is an isomorphism. Moreover, (7, G) admits a family
of preferred paths at, then for every transformation
group (X, G), ¢ is an isomorphism.

Proof. Note that fora = [f1; g1],b = [f2; 92):

d(a)xd(b) = ([f1 +kg];91) * ([f2 + kg,]; 92)

([fl + k91 + Kgl (f2 + kgz)] 9192)

([f1 + kg, + kgy + 91(f2 + kgy) + kg, ], 9192)
[

[

(If1 + 1+ g1f2 + g1kg, + kg1 ],9192)
(If1 +91f2 + kgig2],9192)

Sinceg; kg, + k1 is homotopic tdk,, ¢, (Definition 8).
Itis also true that:

plaxb) = o([fr + g1f2,9192])
= ([fi +orfa+kgig.]s9192)

Thus, the map is an homomorphism.

Let[f1;91], [f2; 2] € m(X, w0, G) suchthaffy; g1] #

[f2592]. If g1 = g2 = g, thenf; and f, are not ho-
motopy equivalent, and s, + k, and f + k4 can-
not be homotopy equivalent. Henglg + kg, ], 91) #

([f2 + kg,], g2). Thusg is injective.

Consider the map
S: G—>7T1(X,$0,G)

g —— [ky; g).

Recall thatk,, + g1k,, is homotopic tok,, ,,, then:

s(91)s(g2) [kg15 91] x [y 92

= (kg + 91k 9192]

= [kglg2’gl.92]

= s(g192).

Thus s is a homomorphism. Consider the short exact

sequence described in Equation 1. Note that
pos(g) =plkgig]) = g.

Thusp o s = idg, the identity map of5. Recall that

ker(p) = m1 (X, zo). Then

p(sop([fig) *[figl™h)

\
=
V)
O
=
=
N
_——
~—
=
=
L,
_
~—

Therefores o p([f; g]) * [f; 9]~ € ker(p). Finally,
sop([fig) *[fr9]" = s(g ) ™' Fi97]

= [kgiglxlg™ fi97"]

= [ky+99 ' Fr997"]

= [kg+ fiel-
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(a) Simply connected (b) Non-simply connected

Figure 4: Representation of equivalence classes for path$ arder ) ) .
g Figure 5: Figure eight space:¢&
Example 1. Consider the transformation groupg™, O,,)
and(S™, Op,+1), m > 1inwhich the orthogonal group
acts on Euclidean space and the sphere, respectively.
SinceE™ and S™, m > 1 are simply connected topo-
As was pointed out, the condition fo€, G) to admit a '09"32' spaces, we have (E",On) = O, and
family of preferred paths at is equivalent to the con- m1(S™, Omy1) = Opmgr,m > 1.
dition that every transformation groygX, G) admits a Example 2. Consider the unit disk
family of preferred paths. D = {(x,y) | d((z,y),(0,0)) < 1} C E2. SinceD is

0 simply connecteds; (D, O3) = Os.

Since[k, + f;e] € m(X,x0), we have[f + ky;e] €
m1 (X, xo). This proves surjectivity, since any lodpis
homotopic to certain loop of the forgh+ k.

Example 3. Consider the topological grou®, +) act-
Remarkll. The maps in the proof of Theorem 10 is  ing on itself by translation. Them;(R,0,R) = R.
known as asplitting mapfor the exact sequence 1. In  More generally, we can replad® by any simply con-
general, the existence of a splitting map establishes an nected topological group and obtain the same result.
isomorphism with a semidirect product.

We now turn to non-simply connected spaces.

We now mention some direct corollaries of Theorem 10. Example 4. Consider the figure-eight spacedepicted

For asimply connectespaceX we have thatr (X, zo) in Figure 5. The fundamental group is tlieee group
is the trivial one-element group, and any two paths with 9enerated by the loops;, A.. This topological space is

the same order are homotopic. Thus the set of paths Path-connected and non-simply connected. as said be-
of orderg make up auniqueequivalence clasgf; g|. fore, we know thatr, (€, z9) = (A1, As) = Fy. The
Figure 4(b) shows how a non-simply connected space 90UP acting overe is the one generated by the reflec-

can have more than one equivalence class for paths oftions S; and S,. Note that this describes the dihedral
orderg. group D- also known aKlein four-group which is iso-

morphic toZs x Z,. The action ofD, over € fixes the
In the simply connected case, choosing any path from pointzo, thus by Corollary 13 we can conclude that:
g-xo to zo provides a family of preferred paths, and the N
semidirect product in Theorem 10 is isomorphicio m1(€, D2) = Fz x (22 X Z»)

Corollary 12. If X is simply connected, then Inwhich the automorphism &% induced byDs is given

Wl(X,.CCQ,G)gG. by

K()S F2—>F2 K522 F2—>F2
If g is afixed pointof (X, G), thatis,g-xo = x, forall N\ AN T N
g € G, then the constant mdpalone provides a family
of preferred paths at,. Kg, : Fo —— Ty Kg,g5,: Fg —— Ty
Corollary 13. If 2y € X is afixed point of X, G), then Al e AT A2

m (X, 20, G) = m (X, x0) x G where the action of7

on (X, z0) is given by Example 5. Consider the topological space described

in Figure 6. Itis basically the regular polygon afsides

K. n(X e (X with extra side_s joining all v_er~tices with the poi_mb
g: T(X; 20) (X, 2o) (center of rotation), let's call itP,,. If we let the dihe-
[A] —— [g)]. dral group D,, to act onP,,, it is clear that the poinizg

is fixed under the action; thus, we can calculate the fun-
damental group of the transformation groyp,,, D.,)
Examples as follows:

We now look at some examples. 71 (Pp, 20, D) = F,, x Dy,
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A etsels
\VAVY ()

Figure 6: Descomposition ofPy, in its generators

The automorphism d,, induced by the elements b¥,
are similar to the ones described in Example 4, for there
are elements iD,, that map\; ontoA;, A;, A; or A; for

J# i

The topological groupSO-

Consider the special orthogonal gro§®-,, which is
homeomorphic to the circl§', and thus acts continu-
ously onS* (by rotations). Let = Ry € SO, then we
have the pattf: I — SO, such thatf(t) = R1_p.

Figure 7: Representation of positive powers off1 ; R1 ]

is the clockwise rotation of* radians, and the patfu
Howlever, this d)oeBotdefine afamil)y of preferred paths  goes fromR . -z, to zq (clockwise direction); therefore,
in St If fo,(t) = Ri_pye,, fo.(t) = R(1_4e, and .

Jo..(t) = R(l,t)(eﬁei), it) is possible to p(rovza that in- the pat.hR% _f% _ f-4 9095 fromrilto fi
deedfy, , is homotopic toRy, fs, + fo,. Consider the  clockwise direction. Usingf1; R.] " =[f_1;R_1]
case wher; = 6, = w. The result is the path from  we can conclude that:

Ry to Ry, and it is also true thakRy = R».. How-

ever, the constant patfy is not homotopic to the path

-xpina

1
n

Jfor. Indeed no family of preferred paths exists, sothat [r ;R . = [f i+ R 1f 1;R?,]
Rhodes’s theorem does not apply to the transformation ' " " oo B
group(S*, SO,). = [foz2;R_2]
Actions on S! [fonsRoa] = [foz;R_2]x[f_1;R_1]
Consider the cyclic group of orderacting onS*. Let = [foz+ R 2f ;R 2R 4]
R. € Z, be the counterclockwise rotation &f radi- = [fos;R_s]
ans andf. be the path fronxg to R1 - .
1 ~
Theorem 14 WI(S 7Zn) —Z [ffl,Rfl]m _ [fimfl;R m_71] [ffl;Rfl]
Proof. Consider the elemenfi;R1] € m1(S',Zy,). = [foma+ R maf 1R _moa R4
Then: = [fom;R_m]
[f1iR1)* = [fr+Rifi;Ri] This clearly reflects aadditivestructure under the com-
— [f2:R:] position rulex, the isomorphism with the integers is
, n T given by the mapping of the generaiéi ; R1] € m(S!)
[frsRi]” = [fziRz]*[f1;Ra] to the generatot € Z. SinceS' is path connected, it
[f2 + Rz f1;R2Ru] does not depend on the base-point chosen. Therefore
" oo m1(SY,Z,) = 7Z. Figure 8 shows the actions of some
- [f% ' R%] clockwise rotations on the inverse element of the gener-
ator[fi;Ru]. O
[fisRa]™ = [fmots Rooa ] [f13 Ry S! acting on Topological Spaces

[fm—l + Rm-1 fl;Rm—l R;]

n n

Suppose tha' acts on a topological spacg. For
= [fz;R=n] r € X, theorbit S* - xy defines and homotopy class on
m1 (X, o). Recall thatr; (S!) = Z, then there exists an

Figure 7 represents the actions of different rotatiBas homomorphism: [5, Sec. 4]

over the pathf. .

. 1
Recall from Proposition 6 that the inverse element of a:m(S7) — mi(X,zo)
[f1;Ralis [R;f%;R%l]. The rotationR%1 = R_1 n a(n)
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Figure 8: Representation of negative powers off1 ; R 1 |

Wherea(n) is the path fromz, to itself following the
Sl-orbit » times. Note that there is enough to consider
what is the image of 1 under the homomorphiam
sinceZ = (1) anda(n)+a(m) = a(n+m); therefore,

a(m (5h)) = (a(1)).

Consider theZ-sets: 71 (X, z9) andR. LetZ be acting
onm (X, xo) via the homomorphismx andZ be acting
onR by translationas follows:

Z xR —R ZX?Tl(X,Io)—>7T1(X,$0)

(n,r) —n+r (n,A) ——— a(n) + A

Now, consider thdiber productoverZ [6, Appendix
my:

7T1(X,,T0) XzR = (7T1(X,£L‘Q) X R)/Z

This set is thejuotient groumf the groupr (X, zo) xR
under the equivalence relatidiA,r + n) ~ (a(n) +
A, 7).

Theorem 15. 71 (X, 2o, S*) 2 m1 (X, 20) Xz R

Proof. Letx € X andr € R, thenr, € X be the path
fromz tor -2 € S'-orbit. Consider the following map:

p: m(X,20) X R —— 71 (X, 20, S")
(A7) ——— [A+ ry;r mod 1]

Recall that- mod 1 € S* sinceS* =~ R/Z. [7] Note
that p is onto since\ + r,, is a path of ordey = r
mod 1. Itis clear thatr = r +n mod 1 forn € Z;
moreover(a(n)+A)+7z, X(r mod 1,z0) AT (T+1)z,
sincea(n) = n,, (because they follow the same orbit
with the base-pointy). Thus, the map is not one-
to-one. Note that if A\, + n) ~ (a(n) + A, r), then
px: (X, 10) xz R — w1 (X, z0,S') is an isomor-
phism. O

Corollary 16. 71(S*, SO2) =R

Figure 9: The 3D figure eight as a cartesian productt xSt

Proof. From the previous theorem consid&r = S,
thenm; (S, S1) 2 71(S!) xz R =2 Z x R/Z = R. As
S =2 50,, we get the isomorphism required. O

Product Spaces

Using the topological spaces and groups studied so far,
itis possible to construct new transformation groups us-
ing direct products. For instance, IeX, G), (Y, H) be
transformation groups, then every pair of actigni) €

G x H gives rise to an homeomorphism: [1, Sec. 10]

(g,h): XxY XxY

(xvy) _ (g-x,h-y)

(z1, 1) (22, y2) H> (9 2122, h - y1y2)
Proposition 17. The mapping
7T1(X7£C()7G) X 7T1()/7y07H) - ﬂ-l(X X )/7 (:C07y0)7G X H)

([fz3 91: [fys ) > [(fa: f3); (9, h)]
is an isomorphism.

Proof. To prove that the mapping is a homomorphism

is enough to say that the direct product is composed by
a morphism in each coordinate. Note that, the projec-
tions:

p1: fo(m (X, 20, G) x {e}) — m (X, z0,G)

p2: fo({e} x m(Y 90, H)) — m(Y, 90, H)

are both bijections; therefore the map is an isomorphism.
O

Example 6. Consider the groug- acting onR. By the
Corollary 12 we know thair; (R, G) = G. Consider
the cartesian produat™ = [[\_, G. Then we can use
Proposition 17 to calculate the fundamental group of
the trasnformation groupR™, G x - - - x G) as follows:

mR",G") = [[mR,G) = G"
=1

which is the desired result as of Corollary 12.
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Despite the distance, Professor Montaldi helped us self-

N S0, (Tz) lessly with doubts in algebraic topology.
Symbols
(X,G) Transformation group
1 Constant functiorf (X) = zg
[A] Equivalence class of
m1(X, z0) Fund. group ofX with base point:
[f; 9] Equivalence class of paths of order
m1(X,20,G) Fund. group of X, G) with base pointz
{ky| g € G} Family of preferred paths
Ry Rotation of angl®
Figure 10: The torus T2 as a cartesian productS! xSt E" Euclidean Space of dimensian
Example 7. Consider the topological space described € Figure-eight space
in Figure 9. It is a representation of the cartesian prod- 5" Sphere of dimension
uct of the figure eight described in Example 5 and the  Dn Dihedral group of orde2n
circle: & x S*. If we want the dihedral group acting O, Orthogonal group of dimensian
over the 3D figure eight, it is possible to use a prod- T, Free group of: generators
uct space using a trivial group action over the circleas 7, Cyclic group of orden
follows:
T (EX S, Dy) = 71 (€, Do) x 1 (S*, {e}) = (FaxDy) x Z = Isomorphic to
) 2 L L ~xo Homotopic modula
Example 8. Con_5|der the torqé[‘ =5 x S . L_et = (g.20) Paths of ordey modulozg
SO, act onT? via _rotatlons with respect to its axis of g . Normal subgroup of
symmetry for rotations. The fundamental group of the | Semidirect product
transformation grougT?, SO,) can be calculated us- X Fiber product ove€r

ing a cartesian product as well, using the same trick as
before of letting act a trivial grouge} on one of the
cartesian components of the torus:

71 (T?,80,) =2 w1 (S, 805) x 11 (S*, {e}) =R x Z

Conclusions

The article written by Rhodes opened the door for a
whole new category in algebraic topology. His ideas
drew a new connection between the worlds of topology
and abstract algebra. Although his results were not so
applicable at first sight, mathematicians soon came to
find them very useful. It is important to emphasize the
results obtained when studied the topological gr8tip
Recall that:

s (Sla Zn)
(S, S0,)

Z
R

I11R

Therefore, when a cyclic group acts 8hits fundamen-

tal group is a discrete group. In the other hand, when a
topological group acts o8 its fundamental group is

a topological group. What can be garnered from taking
a deeper look at this type of work is that there are still
some unanswered questions for relatively easy transfor-
mation groups. For example, we still do not know how
to calculate the fundamental group(af', O,).
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