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Abstract

In 1966, F. Rhodes introduced the idea of the fundamental group of a group acting on a
topological space. His article contains summarized proofsof results and has been studied
since then primarily because the category of transformation groups is more general than
the category of topological spaces. In this article, a thorough study of Rhodes’s work is
presented, providing examples to enrich the theory. Dr. James Montaldi from the Univer-
sity of Manchester has recently provided a more general and applicable approach Rhodes’s
main theorem. His results are also analyzed here.
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Resumen

En 1966, F. Rhodes introdujo la idea del grupo fundamental deun grupoG de homeomor-
fismos de un espacio topológicoX. Su artículo contiene demostraciones que resumen los
resultados importantes y ha sido estudiado desde entonces,principalmente debido a que
la categoría de grupo de transformación es más general que lacategoría de los espacios
topológicos. En este artículo, un estudio a fondo del trabajo de Rhodes se presenta con
ejemplos para enriquecer la teoría. El Dr. James Montaldi dela Universidad de Manch-
ester ha contribuido recientemente a esta teoría con una forma más general y aplicable del
teorema principal de Rhodes. Sus resultados también se analizan aquí.

Palabras Clave.Topología Algebraica, Grupo Fundamental, Acción de Grupo

Introduction

The fundamental group of a transformation group(X,G)
of a groupG acting on a topological spaceX general-
izes the notion of the ordinary fundamental groupπ1(X, x0)
of X by incorporating the action ofG onX . We will
discuss in detail some of the results presented by F. Rhodes
[1] in his article “On the Fundamental Group of a Trans-
formation Group.” Rhodes’ main result deals with the
situation in which the structure of the fundamental group
of (X,G) is determined by the structure ofπ1(X, x0)
together with an appropriate action ofG onπ1(X, x0).
We shall also illustrate the general theory using well-
know actions on topological spaces: Euclidean space,
regular polygons, spheres, and the torus, on which the
groups of integers, orthogonal matrices, and cyclic groups
act.

The objective is to provide details in the proofs as well
as to supplement the theory with concrete examples.

Groups Acting on Topological Spaces

Let G be a group andX be a topological space. We
refer to reader to [2] and [3] for the relevant definitions.

We call the pair(X,G) a transformation groupif G acts
continuously onX in the sense below.

Definition 1. A group actionof a groupG on a setX
is a map

G×X - X

(g, x) - g · x
satisfying the following:

1. For eachg ∈ G, the mapx 7→ g · x is continuous.

2. g1 · (g2 · x) = (g1 · g2) · x for all g1, g2 ∈ G and
x ∈ X .
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3. e·x = x for all x ∈ X , wheree denotes the identity
element ofG.

It follows thatG acts by homeomorphisms ofX . Con-
sider the topological spacesEn (Euclideann-space),
Sn ⊂ En+1 (n-sphere), andPn ⊂ E2 (regularn-sided
polygon). Consider the groupsDn (dihedral group of
order2n) andOn (n × n orthogonal group). We then
have the following transformation groups:

• (En, On).

• (Sn, On+1).

• (Pn, Dn).

The Fundamental Group

We want to know how to describe topological invariants
associated with a transformation group(X,G). In order
to do so, we need to understand how paths inX are
affected by the action ofG. Ultimately we will define
equivalence classes of paths inX , taking into account
the action ofG, and a binary operation on the set of all
such equivalence classes [1, Sec. 3].

Definition 2. Let (X,G) be a transformation group and
x0 be a point inX . Let I denote the interval[0, 1] in the
set of real numbers. Giveng ∈ G, apath of orderg with
base-pointx0 is a continuous mapf : I → X such that
f(0) = x0 andf(1) = g · x0.

All paths inX under consideration will have the same
base-point but the order of the paths can vary. Thecom-
position rulefor such paths is defined as follows.

Definition 3. Consider pathsf1 of orderg1 andf2 of
orderg2. We define thecompositionpathf1 + g1f2 of
orderg1g2 by

(f1 + g1f2)(t) = f1(2t) if 0 ≤ t ≤ 1/2
(f1 + g1f2)(t) = g1f2(2t− 1) if 1/2 ≤ t ≤ 1.

x0

g2 · x0

g1 · x0

g1g2 · x0

f2

f1

f1 + g1f2

Figure 1: Composition of pathsf1 of order g1 and f2 of order g2

Note that(f1+g1f2)(0) = f1(0) = x0, (f1+g1f2)(1/2) =
f1(1) = g1f2(0) = g1 · x0 and (f1 + g1f2)(1) =
g1f2(1) = g1g2 · x0. Figure 1 illustrates the operation
of path composition.

Definition 4. Let f0 andf1 be paths inX of the same
order g. A homotopyfrom f0 to f1 is a continuous
functionF : I × I → X such that for allt, s ∈ I,
F (t, 0) = f0(t), F (t, 1) = f1(t), F (0, s) = x0, and
F (1, s) = g · x0.

If there exists a homotopy fromf0 to f1, we say that
f0 andf1 arehomotopicand writef1 ≍(g,x0) f2. The
usage of this term is justified as follows.

Proposition 5. The relation≍(g,x0) is an equivalence
relation on the set of all paths inX of orderg.

Proof. We need to show that the relation≍(g,x0) is re-
flexive, symmetric, and transitive.

Let f be a path of orderg. Consider the mapF de-
fined by homotopyF (t, s) = f(t) for all t, s ∈ I. We
haveF (0, s) = x0, F (1, s) = g · x0 andF (t, 0) =
F (t, 1) = f(t). ThusF is a homotopy fromf to f , so
thatf ≍(g,x0) f , meaning that the relation is reflexive.

If f0 ≍(g,x0) f1 there exists a homotopyF from f0 to
f1 as defined above. Consider the mapF defined by
F (t, s) = F (t, 1− s). Then we have

F (t, 0) = F (t, 1) = f1(t),
F (t, 1) = F (t, 0) = f0(t),
F (0, s) = x0,
F (1, s) = g · x0.

ThereforeF is a homotopy fromf1 to f0, so the relation
is symmetric.

If f0 ≍(g,x0) f1 andf1 ≍(g,x0) f2 then there exists a
homotopyF1 from f0 to f1 and a homotopyF2 from f1
to f2. Consider the mapF defined by

F (t, s) =

{

F1(t, 2s) if 0 ≤ s ≤ 1/2,
F2(t, 2s− 1) if 1/2 ≤ s ≤ 1.

Note thatF (t, 1/2) = F1(t, 1) = F2(t, 0) = f2(t), so
that the homotopy is well-defined and continuous. Then

F (t, 0) = F1(t, 0) = f0(t),
F (t, 1) = F2(t, 1) = f2(t),
F (0, s) = F1(0, s) = F2(0, s) = x0,
F (1, s) = F1(1, s) = F2(1, s) = g · x0.

ThereforeF is a homotopy fromf0 to f2, so the relation
is transitive.

We use this equivalence relation to definehomotopy classes
of paths inX with the same order. We denote by[f ; g]
the equivalence class of a pathf of orderg. We define
a binary operation⋆ on homotopy classes based on the
composition rule described in Definition 3:

[f1; g1] ⋆ [f2; g2] = [f1 + g1f2; g1g2].
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It is essential to know that this operation is well-defined
on the set of homotopy classes, that is, it depends only
on the homotopy classes off1 andf2.

The set of all equivalence classes[f ; g] is called the
fundamental groupof the transformation group(X,G)
with base-pointx0 and will be denoted byπ1(X, x0, G).

Proposition 6. The setπ1(X, x0, G) with the binary
operation⋆ is a group.

Proof. If e is the identity element of the groupG and
1 denotes the constant map1: I → {x0}, then[1; e] is
the identity element ofπ1(X, x0, G) since

[f ; g] ⋆ [1; e] = [f + g1; ge] = [f + g · x0; g] = [f ; g]

and[1; e] ⋆ [f ; g] = [1+ ef ; eg] = [x0 + f ; g] = [f ; g].

Definef(t) = f(1− t). Then

[f ; g] ⋆
[

g−1f ; g−1
]

= [f + gg−1f ; gg−1]

= [f + f ; e]

= [1; e]
[

g−1f ; g−1
]

⋆ [f ; g] = [g−1f + g−1f ; g−1g]

= [g−1(f + f); g−1g]

= [g−1(g1); e]

= [1; e]

Thus the inverse element[f ; g]−1 =
[

g−1f ; g−1
]

ex-
ists.

For associativity, we are going to use the fact that the op-
eration⋆ is well-defined, and prove this for an element
of each equivalence class. Supposef1 ∈ [f1; g1], f2 ∈
[f2; g2], and f3 ∈ [f3; g3]. Then

(f1+g1f2)+g1g2f3 =







f1(4t) 0 ≤ t ≤ 1/4
g1f2(4t− 1) 1/4 ≤ t ≤ 1/2
g1g2f3(2t− 1) 1/2 ≤ t ≤ 1,

f1+(g1f2+g1g2f3) =







f1(2t) 0 ≤ t ≤ 1/2
g1f2(4t− 2) 1/2 ≤ t ≤ 3/4
g1g2f3(4t− 3) 3/4 ≤ t ≤ 1.

Referring to Figure 2, if we want to define a homotopy
between the paths described above it is necessary to de-
limit Regions I, II and III.

In Region I we have

0 ≤ t ≤ s+ 1

4
,

so that

0 ≤ 4t

s+ 1
≤ 1.

In Region II we have

s+ 1

4
≤ t ≤ s+ 2

4
,

x0 g1 · x0 g1g2 · x0 g1g2g3 · x0

g1g2f3f1

f1

g1f2

g1f2 g1g2f3

Region I Region II Region III

(0, 0) ( 1

4
, 0) ( 1

2
, 0)

( 1

2
, 1) ( 3

4
, 1)

t

s

Figure 2: Homotopy between compositions of pathsf1, f2, and
f3.

so that
0 ≤ 4t− s− 1 ≤ 1.

Finally, in Region III we have

s+ 2

4
≤ t ≤ 1,

so that

0 ≤ 4t− s− 2

2− s
≤ 1.

We now consider the homotopy

F (t, s) =















f1

(

4t
s+1

)

0 ≤ t ≤ s+1
4

g1f2(4t− s− 1) s+1
4 ≤ t ≤ s+2

4

g1g2f3

(

4t−s−2
2−s

)

s+2
4 ≤ t ≤ 1.

Note thatF (0, s) = f1(0) = x0 andF (1, s) = g1g2f3(1) =
g1g2g3x0, since

F (t, 0) =







f1(4t) 0 ≤ t ≤ 1/4
g1f2(4t− 1) 1/4 ≤ t ≤ 1/2
g1g2f3(2t− 1) 1/2 ≤ t ≤ 1

= ((f1 + g1f2) + g1g2f3)(t),

F (t, 1) =







f1(2t) 0 ≤ t ≤ 1/2
g1f2(4t− 2) 1/2 ≤ t ≤ 3/4
g1g2f3(4t− 3) 3/4 ≤ t ≤ 1

= (f1 + (g1f2 + g1g2f3))(t).

This proves associativity.

Consider an equivalence class[f ; e] which is a homo-
topy class of a pathf of order the identity elemente.
Sincee is the identity transformation ofX , we have
f(0) = f(1) = x0, so that[f ; e] is a homotopy class
of loopswith base-pointx0. All such homotopy classes
of loops form the ordinaryfundamental group ofX with
base-pointx0. We denoted this group byπ1(X, x0) and
note that it is a subgroup ofπ1(X, x0, G). We shall de-
note[λ; e] ∈ π1(X, x0) simply by[λ].
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Topological Properties

We will restrict our attention to path-connected spaces,
so that the role of the base-pointx0 is inconsequential.
Rhodes proves in his first theorem [1] that ifρ is a (con-
tinuous) path in X fromx0 to x1, then the map

ρ∗ : π1(X, x0, G) - π1(X, x1, G)

[f ; g] - [ρ+ f + gρ]

is an isomorphism. More generally, a pair of mappings

(ϕ, ψ) : (X,G) - (Y,H)

in whichϕ : X → Y is a continuous map andψ : G→
H is a group homomorphism induces a homomorphism
(ϕ, ψ)∗ of fundamental groups [1, Sec. 5]:

(ϕ, ψ)∗ : π1(X, x0, G) - π1(Y, y0, H)

[f ; g] - [ϕ(f);ψ(g)].

We say that the transformation groups(X,G) and(Y,H)
have the samehomotopy typeif there exist pairs of map-
pings

(ϕ, ψ) : (X,G) - (Y,H)

(ϕ′, ψ′) : (Y,H) - (X,G)

such thatϕ′ϕ andϕϕ′ are homotopic to the identity
maps ofX andY , respectively, andψ andψ′ are iso-
morphisms. Rhodes proves that the fundamental group
of a transformation group is an invariant of the homo-
topy type of its transformation group [1, Sec. 5].

Relationship betweenπ1(X,x0,G) and π1(X,x0)

Let [λ] ∈ π1(X, x0) and [f ; g] ∈ π1(X, x0, G). Ob-
serve that
[f ; g] ⋆ [λ; e] ⋆ [g−1f ; g−1] = ([f ; g] ⋆ [λ; e]) ⋆ [g−1f ; g−1]

= [f + gλ; ge] ⋆ [g−1f ; g−1]

= [f + gλ+ gg−1f ; gg−1]

= [f + gλ+ f ; e].

This establishes thatπ1(X, x0) is anormalsubgroup of
π1(X, x0, G).

Let us consider the inclusion map

i : π1(X, x0) ⊂ - π1(X, x0, G)

such thati([λ]) = [λ] = [λ; e], which is an injective
homomorphism (monomorphism). Let

p : π1(X, x0, G) -- G

be the mapp([f ; g]) = g, which is a surjective homo-
morphism (epimorphism).

Definition 7. [4, Chap. 7] Anexact sequenceis a se-
quence of objects (e.g. vector spaces, groups) and mor-
phisms between them (e.g. linear maps, homomorphisms)
such that the image of each morphism in the sequence
is equal to the kernel of the next morphism in the se-
quence.

Note that Im(i) = ker(p) = π1(X, x0) so that we have
an exact sequence

π1(X, x0) ⊂
i
- π1(X, x0, G)

p
-- G (1)

in whichi is a monomorphism andp is an epimorphism.
Such an exact sequence is known as ashort exact se-
quence. It follows [2, Chap. 3] that thequotient group

π1(X, x0, G)/π1(X, x0)

is isomorphic toG.

In order to obtain a more explicit relationship between
the fundamental groupsπ1(X, x0, G) and π1(X, x0),
we need to be able to relate loops inX based atx0 with
general paths of orderg [1, Sec. 9].

Preferred Paths

Definition 8. The transformation group(X,G) admits
a family of preferred paths{kg | g ∈ G} at x0 if it is
possible to associate to eachg ∈ G a pathkg in X in
such a way that:

1. For allg ∈ G, kg(0) = g · x0 andkg(1) = x0.

2. The pathke associated with the identity element
e ∈ G is constant.

3. For allg1, g2 ∈ G the pathkg1g2 is homotopic to
g1kg2 + kg1 .

If G is a topological group, thenG acts on itself by
homeomorphisms via translations. A family of preferred
paths{hg | g ∈ G} at the identity elemente ∈ G then
induces a family{kg | g ∈ G} of preferred paths at
x0 ∈ X as follows:kg(t) = hg(t) · x0, ∀t ∈ I.[1, Sec.
9]

The existence of a family of preferred paths leads to
a more explicit relationship between both fundamental
groups,π1(X, x0) andπ1(X, x0, G). For eachg ∈ G,
we have an automorphismKg of π1(X, x0) defined by

Kg : π1(X, x0) - π1(X, x0)

[λ] - [kg + gλ+ kg].

Forg1, g2 ∈ G we have

Kg1
(Kg2

([λ])) = Kg1
([kg2 + g2λ+ kg2 ])

= [kg1 + g1(kg2 + g2λ+ kg2) + kg1 ]

= [kg1 + g1kg2 + g1g2λ+ g1kg2 + kg1 ].

Since the composition rule+ is well-defined on homo-
topy classes of paths, we can take any representative of
the equivalence class. Recalling thatg1kg2 + kg1 is ho-
motopic tokg1g2 , we have thatkg1 +g1kg2 is homotopic
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x0 x0

λ

Kg1g2

g1 · x0

g1g2 · x0

kg1

g1kg2

g1g2λ

g1kg2

kg1

Figure 3: Automorphism induced bykg1
,kg2

to kg1g2 . Thuskg1 + g1kg2 + g1g2λ+ g1kg2 + kg1 ∼x0

kg1g2 + g1g2λ+ kg1g2 . Thus we have

Kg1(Kg2([λ])) = [kg1g2 + g1g2λ+ kg1g2 ]

= Kg1g2([λ]),

and soKg1 ◦Kg2 = Kg1g2 . This automorphism is illus-
trated in Figure 3.

Thus we see that the mapg → Kg defines a homomor-
phism

K : G - Aut(π1(X, x0)) (2)

fromG into the group Aut(π1(X, x0)) of automorphisms
of π1(X, x0) [1, Sec. 9].

Let us now consider the product setπ1(X, x0)×G of all
ordered pairs([λ], g) where[λ] ∈ π1(X, x0) andg ∈ G.

Definition 9. [2, Chap. 5] Given a groupG that acts
on a groupH by group automorphism viaϕ : G →
Aut(H), thesemidirect productgroup, denoted by
H ⋊ϕ G (or simplyH ⋊G) is the group whose under-
lying set is the product setH × G, but whose group
operation is defined by

(h1, g1)(h2, g2) = (h1ϕ(g1)(h2), g1g2)

for g1, g2 ∈ G andh1, h2 ∈ H .

Thus a family of preferred paths allows us to form the
semidirect product group

π1(X, x0)⋊G

in which we have the group operation

([λ1], g1)([λ2], g2) = ([λ1 +Kg1(λ2)], g1g2)

for any([λ1], g1), ([λ2], g2) ∈ π1(X, x0)×G.

Rhodes’s Theorem

We are going to use the semidirect groupπ1(X, x0)⋊G
in order to obtain an explicit relation between the fun-
damental groupsπ1(X, x0) andπ1(X, x0, G).

Theorem 10. Suppose that(X,G) admits a family of
preferred paths atx0. Then the map

φ : π1(X, x0, G) - π1(X, x0)⋊G

[f ; g] - ([f + kg], g)

is an isomorphism. Moreover, if(G,G) admits a family
of preferred paths ate, then for every transformation
group(X,G), φ is an isomorphism.

Proof. Note that fora = [f1; g1], b = [f2; g2]:
φ(a) ⋆ φ(b) = ([f1 + kg1 ]; g1) ⋆ ([f2 + kg2 ]; g2)

= ([f1 + kg1 +Kg1
(f2 + kg2)], g1g2)

= ([f1 + kg1 + kg1 + g1(f2 + kg2 ) + kg1 ], g1g2)

= ([f1 + 1+ g1f2 + g1kg2 + kg1 ], g1g2)

= ([f1 + g1f2 + kg1g2 ], g1g2)

Sinceg1kg2 + k1 is homotopic tokg1g2 (Definition 8).
It is also true that:

φ(a ⋆ b) = φ([f1 + g1f2, g1g2])

= ([f1 + g1f2 + kg1g2 ], g1g2)

Thus, the mapφ is an homomorphism.

Let [f1; g1], [f2; g2] ∈ π1(X, x0, G) such that[f1; g1] 6=
[f2; g2]. If g1 = g2 = g, thenf1 andf2 are not ho-
motopy equivalent, and sof1 + kg andf2 + kg can-
not be homotopy equivalent. Hence([f1 + kg1 ], g1) 6=
([f2 + kg2 ], g2). Thusφ is injective.

Consider the map

s : G - π1(X, x0, G)

g - [kg; g].

Recall thatkg1 + g1kg2 is homotopic tokg1g2 , then:

s(g1)s(g2) = [kg1 ; g1] ⋆ [kg2 ; g2]

= [kg1 + g1kg2 ; g1g2]

= [kg1g2 ; g1g2]

= s(g1g2).

Thuss is a homomorphism. Consider the short exact
sequence described in Equation 1. Note that

p ◦ s(g) = p([kg; g]) = g.

Thusp ◦ s = idG, the identity map ofG. Recall that
ker(p) = π1(X, x0). Then

p(s ◦ p([f ; g]) ⋆ [f ; g]−1) = p(s ◦ p([f ; g]))p([f ; g]−1)

= p([f ; g])p([f ; g]−1)

= e.

Therefores ◦ p([f ; g]) ⋆ [f ; g]−1 ∈ ker(p). Finally,

s ◦ p([f ; g]) ⋆ [f ; g]−1 = s(g) ⋆ [g−1f ; g−1]

= [kg; g] ⋆ [g
−1f ; g−1]

= [kg + gg−1f ; gg−1]

= [kg + f ; e].
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X

x0

g · x0

[f ; g]

(a) Simply connected

X

x0

g · x0

[f ; g]

[f ′; g]

(b) Non-simply connected

Figure 4: Representation of equivalence classes for paths of order
g

Since[kg + f ; e] ∈ π1(X, x0), we have[f + kg; e] ∈
π1(X, x0). This proves surjectivity, since any loopλ is
homotopic to certain loop of the formf + kg.

As was pointed out, the condition for(G,G) to admit a
family of preferred paths ate is equivalent to the con-
dition that every transformation group(X,G) admits a
family of preferred paths.

Remark11. The maps in the proof of Theorem 10 is
known as asplitting mapfor the exact sequence 1. In
general, the existence of a splitting map establishes an
isomorphism with a semidirect product.

We now mention some direct corollaries of Theorem 10.

For asimply connectedspaceX we have thatπ1(X, x0)
is the trivial one-element group, and any two paths with
the same order are homotopic. Thus the set of paths
of orderg make up auniqueequivalence class[f ; g].
Figure 4(b) shows how a non-simply connected space
can have more than one equivalence class for paths of
orderg.

In the simply connected case, choosing any path from
g ·x0 to x0 provides a family of preferred paths, and the
semidirect product in Theorem 10 is isomorphic toG.

Corollary 12. If X is simply connected, then
π1(X, x0, G) ∼= G.

If x0 is afixed pointof (X,G), that is,g ·x0 = x0 for all
g ∈ G, then the constant map1 alone provides a family
of preferred paths atx0.

Corollary 13. If x0 ∈ X is a fixed point of(X,G), then
π1(X, x0, G) ∼= π1(X, x0) ⋊ G where the action ofG
onπ1(X, x0) is given by

Kg : π(X, x0) - π(X, x0)

[λ] - [gλ].

Examples

We now look at some examples.

S1

S2

S1S2

λ1 λ2

x0

Figure 5: Figure eight space:E

Example 1. Consider the transformation groups(En, On)
and(Sm, Om+1),m > 1 in which the orthogonal group
acts on Euclidean space and the sphere, respectively.
SinceEn andSm,m > 1 are simply connected topo-
logical spaces, we haveπ1(En, On) ∼= On and
π1(S

m, Om+1) ∼= Om+1,m > 1.

Example 2. Consider the unit disk
D = {(x, y) | d((x, y), (0, 0)) ≤ 1} ⊆ E2. SinceD is
simply connected,π1(D, O2) ∼= O2.

Example 3. Consider the topological group(R,+) act-
ing on itself by translation. Thenπ1(R, 0,R) ∼= R.
More generally, we can replaceR by any simply con-
nected topological group and obtain the same result.

We now turn to non-simply connected spaces.

Example 4. Consider the figure-eight spaceE depicted
in Figure 5. The fundamental group is thefree group
generated by the loopsλ1, λ2. This topological space is
path-connected and non-simply connected. as said be-
fore, we know thatπ1(E, x0) ∼= 〈λ1, λ2〉 ∼= F2. The
group acting overE is the one generated by the reflec-
tionsS1 andS2. Note that this describes the dihedral
groupD2 also known asKlein four-group, which is iso-
morphic toZ2 × Z2. The action ofD2 overE fixes the
pointx0, thus by Corollary 13 we can conclude that:

π1(E, D2) ∼= F2 ⋊ (Z2 × Z2)

In which the automorphism ofF2 induced byD2 is given
by:

K0 : F2
- F2 KS2

: F2
- F2

λ1
-

� λ1 λ1
-

� λ1

KS1
: F2

- F2 KS1S2
: F2

- F2

λ1
-

� λ2 λ1
-

� λ2

Example 5. Consider the topological space described
in Figure 6. It is basically the regular polygon ofn sides
with extra sides joining all vertices with the pointx0
(center of rotation), let’s call itP̃n. If we let the dihe-
dral groupDn to act onP̃n, it is clear that the pointx0
is fixed under the action; thus, we can calculate the fun-
damental group of the transformation group(P̃n, Dn)
as follows:

π1(P̃n, x0, Dn) ∼= Fn ⋊Dn
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x0 x0 x0

Figure 6: Descomposition ofP̃n in its generators

The automorphism ofFn induced by the elements ofDn

are similar to the ones described in Example 4, for there
are elements inDn that mapλi ontoλi, λi, λj or λj for
j 6= i.

The topological groupSO2

Consider the special orthogonal groupSO2, which is
homeomorphic to the circleS1, and thus acts continu-
ously onS1 (by rotations). Lete = R0 ∈ SO2, then we
have the pathf : I → SO2 such thatf(t) = R(1−t)θ.

However, this doesnotdefine a family of preferred paths
in S1. If fθ1(t) = R(1−t)θ1 , fθ2(t) = R(1−t)θ2 and
fθ1,2(t) = R(1−t)(θ1+θ2), it is possible to prove that in-
deedfθ1,2 is homotopic toRθ1fθ2 + fθ1. Consider the
case whenθ1 = θ2 = π. The result is the path from
R0 to R2π and it is also true thatR0 = R2π. How-
ever, the constant pathf0 is not homotopic to the path
f2π. Indeed no family of preferred paths exists, so that
Rhodes’s theorem does not apply to the transformation
group(S1, SO2).

Actions onS1

Consider the cyclic group of ordern acting onS1. Let
R 1

n
∈ Zn be the counterclockwise rotation of2πn radi-

ans andf 1

n
be the path fromx0 toR 1

n
· x0.

Theorem 14. π1(S1,Zn) ∼= Z.

Proof. Consider the element[f 1

n
;R 1

n
] ∈ π1(S

1,Zn).
Then:

[f 1

n
;R 1

n
]
2

= [f 1

n
+R 1

n
f 1

n
;R2

1

n
]2

= [f 2

n
;R 2

n
]

[f 1

n
;R 1

n
]3 = [f 2

n
;R 2

n
] ⋆ [f 1

n
;R 1

n
]

= [f 2

n
+R 2

n
f 1

n
;R 2

n
R 1

n
]

= [f 3

n
;R 3

n
]

...
...

...

[f 1

n
;R 1

n
]
m

= [fm−1

n
;Rm−1

n
] ⋆ [f 1

n
;R 1

n
]

= [fm−1

n
+Rm−1

n
f 1

n
;Rm−1

n
R 1

n
]

= [fm
n
;Rm

n
]

Figure 7 represents the actions of different rotationsRm
n

over the pathf 1

n
.

Recall from Proposition 6 that the inverse element of
[f 1

n
;R 1

n
] is [R−1

1

n

f 1

n
;R−1

1

n

]. The rotationR−1
1

n

= R− 1

n

f 1

n

R 1

n

(

f 1

n

)

R 2

n

(

f 1

n

)

x0

R 1

n
· x0

R 2

n
· x0

R 3

n
· x0

Rn−1

n

(

f 1

n

)

2π 1

n

Figure 7: Representation of positive powers of[f 1

n

;R 1

n

]

is the clockwise rotation of2πn radians, and the pathf 1

n

goes fromR 1

n
·x0 tox0 (clockwise direction); therefore,

the pathR−1
1

n

f 1

n
= f− 1

n
goes fromx0 toR− 1

n
· x0 in a

clockwise direction. Using[f 1

n
;R 1

n
]
−1

= [f− 1

n
;R− 1

n
]

we can conclude that:

[f− 1

n
;R− 1

n
]
2

= [f− 1

n
+R− 1

n
f− 1

n
;R2

− 1

n
]

= [f− 2

n
;R− 2

n
]

[f− 1

n
;R− 1

n
]
3

= [f− 2

n
;R− 2

n
] ⋆ [f− 1

n
;R− 1

n
]

= [f− 2

n
+R− 2

n
f− 1

n
;R− 2

n
R− 1

n
]

= [f− 3

n
;R− 3

n
]

...
...

...

[f− 1

n
;R− 1

n
]m = [f−m−1

n
;R−m−1

n
] ⋆ [f− 1

n
;R− 1

n
]

= [f−m−1

n
+R−m−1

n
f− 1

n
;R−m−1

n
R− 1

n
]

= [f−m
n
;R−m

n
]

This clearly reflects anadditivestructure under the com-
position rule⋆, the isomorphism with the integers is
given by the mapping of the generator[f 1

n
;R 1

n
] ∈ π1(S

1)

to the generator1 ∈ Z. SinceS1 is path connected, it
does not depend on the base-point chosen. Therefore
π1(S

1,Zn) ∼= Z. Figure 8 shows the actions of some
clockwise rotations on the inverse element of the gener-
ator[f 1

n
;R 1

n
].

S
1 acting on Topological Spaces

Suppose thatS1 acts on a topological spaceX . For
x ∈ X , theorbit S1 · x0 defines and homotopy class on
π1(X, x0). Recall thatπ1(S1) ∼= Z, then there exists an
homomorphism: [5, Sec. 4]

α : π1(S
1) - π1(X, x0)

n - α(n)
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R
− 1

n
· x0

R
− 2

n
· x0

R
− 3

n
· x0

f
− 1

n

R
− 1

n

(

f
− 1

n

)

R
− 2

n

(

f
− 1

n

)

−2π 1

n
x0

Figure 8: Representation of negative powers of[f 1

n

;R 1

n

]

Whereα(n) is the path fromx0 to itself following the
S1-orbit n times. Note that there is enough to consider
what is the image of 1 under the homomorphismα,
sinceZ = 〈1〉 andα(n)+α(m) = α(n+m); therefore,
α(π1(S

1)) = 〈α(1)〉.
Consider theZ-sets:π1(X, x0) andR. LetZ be acting
onπ1(X, x0) via the homomorphismα andZ be acting
onR by translationas follows:

Z× R - R Z× π1(X, x0) - π1(X, x0)

(n, r) - n+ r (n, λ) - α(n) + λ

Now, consider thefiber productoverZ [6, Appendix
III]:

π1(X, x0)×Z R = (π1(X, x0)× R)/Z

This set is thequotient groupof the groupπ1(X, x0)×R

under the equivalence relation(λ, r + n) ∼ (α(n) +
λ, r).

Theorem 15. π1(X, x0, S1) ∼= π1(X, x0)×Z R

Proof. Let x ∈ X andr ∈ R, thenrx ∈ X be the path
fromx to r ·x ∈ S1-orbit. Consider the following map:

ρ : π1(X, x0)× R - π1(X, x0, S
1)

(λ, r) - [λ+ rx0
; r mod 1]

Recall thatr mod 1 ∈ S1 sinceS1 ∼= R/Z. [7] Note
that ρ is onto sinceλ + rx0

is a path of orderg ≡ r
mod 1. It is clear thatr ≡ r + n mod 1 for n ∈ Z;
moreover,(α(n)+λ)+rx0

≍(r mod 1,x0) λ+(r+n)x0

sinceα(n) = nx0
(because they follow the same orbit

with the base-pointx0). Thus, the mapρ is not one-
to-one. Note that if(λ, r + n) ∼ (α(n) + λ, r), then
ρ∗ : π1(X, x0) ×Z R → π1(X, x0, S

1) is an isomor-
phism.

Corollary 16. π1(S1, SO2) ∼= R

Figure 9: The 3D figure eight as a cartesian productE×S
1

Proof. From the previous theorem considerX = S1,
thenπ1(S1, S1) ∼= π1(S

1)×Z R ∼= Z× R/Z ∼= R. As
S1 ∼= SO2, we get the isomorphism required.

Product Spaces

Using the topological spaces and groups studied so far,
it is possible to construct new transformation groups us-
ing direct products. For instance, let(X,G), (Y,H) be
transformation groups, then every pair of action(g, h) ∈
G×H gives rise to an homeomorphism: [1, Sec. 10]

(g, h) : X × Y - X × Y

(x, y) - (g · x, h · y)

(x1, y1)(x2, y2) - (g · x1x2, h · y1y2)

Proposition 17. The mapping

π1(X,x0, G)× π1(Y, y0,H) - π1(X × Y, (x0, y0), G×H)

([fx; g], [fy ; h]) - [(fx, fy); (g, h)]

is an isomorphism.

Proof. To prove that the mapping is a homomorphism
is enough to say that the direct product is composed by
a morphism in each coordinate. Note that, the projec-
tions:

p1 : f∗(π1(X, x0, G)× {e}) - π1(X, x0, G)

p2 : f∗({e} × π1(Y, y0, H)) - π1(Y, y0, H)

are both bijections; therefore the map is an isomorphism.

Example 6. Consider the groupG acting onR. By the
Corollary 12 we know thatπ1(R, G) ∼= G. Consider
the cartesian productGn =

∏n
i=1G. Then we can use

Proposition 17 to calculate the fundamental group of
the trasnformation group(Rn, G×· · ·×G) as follows:

π1(R
n, Gn) ∼=

n
∏

i=1

π1(R, G) ∼= Gn

which is the desired result as of Corollary 12.
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Figure 10: The torusT2 as a cartesian productS1
×S

1

Example 7. Consider the topological space described
in Figure 9. It is a representation of the cartesian prod-
uct of the figure eight described in Example 5 and the
circle: E × S1. If we want the dihedral group acting
over the 3D figure eight, it is possible to use a prod-
uct space using a trivial group action over the circle as
follows:

π1(E×S
1
, D2) ∼= π1(E, D2)×π1(S

1
, {e}) ∼= (F2⋊D2)×Z

Example 8. Consider the torusT2 = S1 × S1. Let
SO2 act onT2 via rotations with respect to its axis of
symmetry for rotations. The fundamental group of the
transformation group(T2, SO2) can be calculated us-
ing a cartesian product as well, using the same trick as
before of letting act a trivial group{e} on one of the
cartesian components of the torus:

π1(T
2, SO2) ∼= π1(S

1, SO2)× π1(S
1, {e}) ∼= R× Z

Conclusions

The article written by Rhodes opened the door for a
whole new category in algebraic topology. His ideas
drew a new connection between the worlds of topology
and abstract algebra. Although his results were not so
applicable at first sight, mathematicians soon came to
find them very useful. It is important to emphasize the
results obtained when studied the topological groupS1.
Recall that:

π1(S
1,Zn) ∼= Z

π1(S
1, SO2) ∼= R

Therefore, when a cyclic group acts onS1 its fundamen-
tal group is a discrete group. In the other hand, when a
topological group acts onS1 its fundamental group is
a topological group. What can be garnered from taking
a deeper look at this type of work is that there are still
some unanswered questions for relatively easy transfor-
mation groups. For example, we still do not know how
to calculate the fundamental group of(S1, O2).
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Symbols

(X,G) Transformation group
1 Constant functionf(X) = x0
[λ] Equivalence class ofλ
π1(X, x0) Fund. group ofX with base pointx0
[f ; g] Equivalence class of paths of orderg
π1(X, x0, G) Fund. group of(X,G) with base pointx0
{kg | g ∈ G} Family of preferred paths
Rθ Rotation of angleθ
En Euclidean Space of dimensionn
E Figure-eight space
Sn Sphere of dimensionn
Dn Dihedral group of order2n
On Orthogonal group of dimensionn
Fn Free group ofn generators
Zn Cyclic group of ordern

∼= Isomorphic to
∼x0

Homotopic modulox0
≍(g,x0) Paths of orderg modulox0
E Normal subgroup of
⋊ Semidirect product
×G Fiber product overG
〈a〉 Group generated bya
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