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Modelo analítico basado en redes neuronales para 
predecir la estabilidad a cortante de vigas de acero  
con un alma corrugada trapezoidal

Abstract
Corrugated webs are used to increase the shear stability of steel webs of beam-like 
members and to eliminate the need of transverse stiffeners. Previously developed 
formulas for predicting the shear strength of trapezoidal corrugated steel webs, along 
with the corresponding theory, are summarized. An artificial neural network (ANN)-based 
model is proposed to estimate the shear strength of steel girders with a trapezoidal 
corrugated web, and under a concentrated load. 210 test results from previous published 
research were collected into a database according to relevant test specimen parameters 
in order to feed the simulated ANNs. Seven (geometrical and material) parameters were 
identified as input variables and the ultimate shear stress at failure was considered the 
output variable. The proposed ANN-based analytical model yielded maximum and mean 
relative errors of 0.0% for the 210 points from the database. Moreover, still based on 
those points, it was illustrated that the ANN-based model clearly outperforms the other 
existing analytical models, which yield mean errors larger than 13%.

Keywords: Shear strength, corrugated webs, trapezoidal corrugation, steel girders, 
artificial neural networks, analytical model

Resumen
Las almas corrugadas son usadas para incrementar la estabilidad a cortante de las almas 
de las vigas de acero de los elementos en forma de viga para eliminar la necesidad 
de rigidizadores transversales. Las fórmulas desarrolladas con anterioridad para predecir 
la resistencia a cortante de las almas de acero corrugado trapezoidales son resumidas 
junto con la teoría correspondiente. Se propone un modelo basado en una red neuronal 
artificial (ANN por su siglas en inglés) para estimar la resistencia a cortante de las vigas de 
acero con una alma corrugada trapezoidal y bajo una carga concentrada. Se recopilaron 
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210 resultados de pruebas de investigaciones publicadas previamente en una base de 
datos de acuerdo con los parámetros relevantes de la muestra de prueba para alimentar 
los modelos ANN simulados. Se identificaron siete parámetros (geométricos y materiales) 
como variables de entrada y el esfuerzo cortante final en caso de falla se consideró la 
variable de salida. El modelo analítico basado en ANN propuesto, arrojó errores relativos 
máximos y medios de 0.0% para los 210 puntos de la base de datos. Además, aún con 
base en esos puntos, se ilustró que el modelo basado en ANN claramente supera a los 
otros modelos analíticos existentes, que producen errores medios mayores al 13%.

Palabras clave: Resistencia a cortante, almas corrugadas, corrugado trapezoidal, vigas de 
acero, red neuronal artificial, modelo analítico

INTRODUCTION

Corrugated steel plates without additional stiffeners are characterized by high shear 
buckling strength and out-of-plane flexural stiffness, having been widely used in 
structural engineering applications, such as large span roofs, steel plate shear walls, and 
bridge girders [1-4]. The concept of replacing flat webs with corrugated webs in bridge 
structures was first proposed in France in 1986, then successfully applied worldwide in 
the past 30 years [5, 6]. Typically, the corrugations in the web are trapezoidal, but forms 
like sinusoidal, triangular, and rectangular have also been considered. Corrugations are 
used to increase the shear stability of webs in beam-like members, thus eliminating the 
need of transverse stiffeners. This paper focuses on the shear strength of steel webs with 
trapezoidal corrugations, a topic that has been extensively studied since the end of 20th 
century, covering both buckling and plasticity phenomena [7-13]. Shimada (1965) [14] 
was the first to study the shear strength of steel girders made of folded-plate webs. Easley 
and McFarland (1969) [15] proposed the global shear buckling equation of corrugated 
webs by treating them as flat and orthotropic. Lindner & Aschinger (1988) [16] carried 
out experimental tests to assess the shear strength of trapezoidal corrugated steel webs 
and suggested using 70% of the elastic shear buckling stress as the nominal strength for 
design purposes. Luo & Edlund (1994, 1996) [17, 18] analysed the buckling of trapezoidal 
corrugated panels under in-plane loading by spline finite strip and finite element (FE) 
methods. The influence on the elastic buckling load of various parameters, such as 
geometry, loading patterns and boundary conditions, was assessed. Elgaaly et al. (1996) 
[19] presented experimental and analytical results for steel beams with trapezoidal 
corrugated webs loaded predominantly in shear, and proposed bucking formulas 
based on (i) the local deformation of the corrugation folds modelled as isotropic flat 
plates, or (ii) the global deformation of the entire web panel modelled as an orthotropic 
plate. Metwally (1998) [10] investigated the behaviour of steel girders with trapezoidal 
corrugated webs and proposed a formula for predicting their nominal shear strength. 
Yamazaki (2001) [20] proposed formulae for the computation of the buckling strength 
of corrugated webs, based on results from six full-scale models of steel bridge girder 
webs. Driver et al. (2006) [21] tested full-scale corrugated web girders made of HPS 485W 
steel, assessed the effect of web initial geometric imperfections through measurements 
of the out-of-plane displacements, and proposed a lower bound design equation 
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that accounts for both local and global buckling of the web in the elastic and inelastic 
domains. Watanabe et al. (2007) [22] presented test results for the shear capacity of steel 
girders using four different trapezoidal corrugation shapes. Yi et al. (2008) [23] studied 
the nature of the interactive shear buckling of corrugated webs and concluded that the 
first order interactive shear buckling equation not accounting for material inelasticity 
provides a good estimation of the shear strength of corrugated steel webs by comparison 
with 15 tests and finite element analysis (FEA) results. Moon et al. (2009) [24] presented 
three test results, described the shear strength formula previously presented by Yi et al. 
(2008) [23], and compared the proposed formula and several other formulas with results 
from 17 tests. Sause & Braxtan (2011) [25] summarized previously developed formulas 
for predicting the shear strength of trapezoidal corrugated steel webs, along with the 
corresponding theory, and proposed a novel formula. Nie et al. (2013) [26] conducted 
an experimental and analytical study to investigate the shear strength of trapezoidal 
corrugated steel webs. The experimental program involved testing eight H-shaped steel 
girders with trapezoidal webs. Hassanein and Kharoob (2013a, b) [27, 28] carried out 
geometrically and materially nonlinear imperfect analyses (GMNIA) of full-scale bridge 
girders with corrugated steel webs failing by shear and found that when the ratio of 
flange’s thickness to corrugated web’s thickness was greater than three, the boundary 
conditions between flange and web were approximately fixed; a formula for computing 
the interactive shear buckling of corrugated webs under fixed boundary conditions was 
proposed. Leblouba et al. (2017a, b) [29, 30] conducted laboratory tests on a series of 
corrugated steel web beams to investigate their shear behaviors; three typical failure 
modes were observed and the failure mechanisms on the post-buckling phase were 
assessed; besides, five analytical models for the estimation of the critical shear buckling 
stress based on FE analysis results were proposed and validated against test data.

Despite all the research done on the shear behavior of steel members with corrugated 
webs, design codes or guidelines, with the Eurocode (2005) [31] and JSCE (1998) [32] 
as exceptions, are still lacking specifications for this type of structural elements [33]. 
Moreover, there are still many uncertainties and discrepancies associated with test 
data and proposed models due to many factors, including geometric imperfections of 
the web, material properties, shear buckling modes, and inconsistencies between the 
assumed test conditions and the theoretical models. In order to effectively (accurately 
and efficiently) estimate the shear capacity of corrugated web steel girders, this paper 
proposes the use of artificial neural networks (also referred in this manuscript as ANN 
or neural nets), a popular machine learning technique. Machine learning, one of the 
six disciplines of Artificial Intelligence (AI), without which the task of having machines 
acting humanly could not be accomplished, allows us to “teach” computers how to 
perform tasks by providing examples of how they should be done [34]. When there is 
abundant data (also called examples or patterns) explaining a certain phenomenon, but 
its theory richness is poor, machine learning can be a perfect tool; as such, its application 
to the problem of shear in corrugated steel web is suitable and timely. The artificial neural 
network is the (i) oldest [35] and (ii) most powerful [36] technique of machine learning. 
ANNs also lead the number of practical applications, virtually covering any field of 
knowledge [37, 38]. In its most general form, an ANN is a mathematical model designed 
to perform a particular task, based on the way the human brain processes information, 
i.e., with the help of its processing units (the neurons). ANNs have been employed to 
perform several types of real-world basic tasks. Concerning functional approximation, 
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ANN-based solutions are frequently more accurate than those provided by traditional 
approaches, such as multi-variate nonlinear regression, besides not requiring a good 
knowledge of the function shape being modelled (Flood, 2008) [39]. The proposed ANN 
was designed based on 210 experimental results available to date in the literature (see 
section 2). The focus of this study was not to understand the mechanics underlying the 
shear behavior of corrugated steel webs, but parametric studies by means of accurate 
and robust ANN-based models make it possible to evaluate and improve existing 
mechanical models. 

DATA GATHERING

Many shear strength tests of I-shaped beams and girders with trapezoidal corrugated 
webs have been conducted. The 210-point dataset [40] used to feed the ANN software 
employed in this work was assembled from the following experimental results [13, 16, 
19, 20, 22, 24-26, 29, 30, 41-45].

Seven independent variables were adopted as inputs in ANN simulations, as described 
and illustrated in Table 1 and Figure 1, respectively. In Figure 1(a), a simply supported girder 
with corrugated steel web (height h

w
) is subjected to a concentrated load (Q) distanced 

a (shear span) from the left support, until (web) shear failure occurs. Figure 1(b) depicts 
details of the corrugated web mid surface (top-view of a single “wavelength”), namely 
the widths of parallel and inclined folds (b and c, respectively), the projected width of the 
inclined fold (d), the corrugation depth (h

r
), and the thickness of the corrugated plate (t

w
). 

The maximum shear stress (assumed uniform over web’s height) when failure occurs (τ
e
) 

is the target/output (dependent) variable considered in all assessed ANNs. Target values 
were either reported by the authors of the experimental tests or calculated as τ

e
 = V

e
/ 

(h
w

t
w
), where V

e
 is the maximum shear force carried by the test specimen.

TABLE 1. Variables (and some stats on their values) considered for ANN simulations.

Input variables ANN 
inputs

Values
min max average

Geometry

a (mm) shear span 1 287 4500 990

hw (mm) web height 2 260 2005 744

tw (mm) web thickness 3 0.1 8 1.6

b (mm) width of the parallel fold 4 19.8 300 112

d (mm)
projected width of the 

inclined fold
5 11.9 220 71.8

hr (mm) corrugation depth 6 12 150.2 66.9

Material fy 
(MPa) steel nominal yield stress 7 171 714 377.69

Target variable ANN 
output

Values
min max average

Strength τe (MPa) ultimate shear stress 1 19.0 375.9 160.1
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FIGURE 1. (A) Simple supported corrugated web steel girder under concentrated load, and (B) mid surface 
profile of a single “wavelength” of the trapezoidal corrugated web.

ARTIFICIAL NEURAL NETWORKS

Brief Introduction

Since artificial neural networks (ANN) are a machine learning technique widely described 
in the scientific literature, please refer to Ref. [46] for a more thorough presentation of 
this topic. The general ANN structure consists of several nodes disposed in L vertical 
layers (input layer, hidden layers, and output layer) and connected between them, as 
depicted in Figure 2. Associated to each node in layers 2 to L, also called neuron, is a 
linear or nonlinear transfer function, which receives the so-called net input and transmits 
an output. In this work, only feedforward networks were implemented, i.e., output from 
any node is only transmitted to nodes located in subsequent layers (as shown in Figure 
2). ANN’s computing power makes them suitable to efficiently solve small to large-scale 
complex problems, which can be attributed to their (i) massively parallel distributed 
structure and (ii) ability to learn and generalize, i.e., produce reasonably accurate outputs 
for inputs not used during the learning (also called training) phase.

A

B
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FIGURE 2. Example of a feedforward network with node structure 3-2-1.

Learning

Learning is nothing else than determining network unknown parameters through some 
algorithm in order to minimize network’s performance measure, typically a function of 
the difference between predicted and target (desired) out puts. When ANN learning is 
iterative in nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. 
From previous knowledge, examples or data points are selected to train the network, 
grouped in the so-called training dataset. During an iterative learning, while the training 
dataset is used to tune network unknowns, a process of cross-validation takes place 
by using a set of data completely distinct from the training counterpart (the validation 
dataset), so that the generalization performance of the network can be attested. Once 
“optimum” network parameters are determined, typically associated to a minimum of 
the validation performance curve (called early stop – see Figure 3), many authors still 
perform a final assessment of model’s accuracy by presenting to it a third fully distinct 
dataset called “testing.” Heuristics suggest that early stopping avoids overfitting, i.e. the 
loss of ANN’s generalization ability.

Error

early stop Time

Training

underfitting overfitting

validation

FIGURE 3. Assessing ANN’s generalization ability via cross-validation.
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Implemented ANN features

The “behavior” of any ANN depends on many “features,” having been implemented 15 ANN 
features in this work (including data pre/post processing ones). For those features, it is 
important to bear in mind that no ANN guarantees good approximations via extrapolation 
(either in functional approximation or classification problems), i.e., the implemented ANNs 
should not be applied outside the input variable ranges used for network training. Since 
there are no objective rules dictating which method per feature guarantees the best 
network performance for a specific problem, an extensive parametric analysis (composed 
of nine parametric sub-analyses) was carried out to find “the optimum” net design. A 
description of all methods/formulations implemented for each ANN feature (see Tables 
2-4)—they are a selection from state of art literature on ANNs, including both traditional 
and promising modern techniques, and can be found in previous published works 
[47]—may need to be reviewed by the reader to fully understand the meaning of all 
variables reported in this manuscript. The whole work was coded in MATLAB [48], making 
use of its neural network toolbox when dealing with popular learning algorithms (1-3 in 
Table 4). Each parametric sub-analysis (SA) consists of running all feasible combinations (also 
called “combos”) of pre-selected methods for each ANN feature, in order to get performance 
results for each designed net, thus allowing the selection of the best ANN according to a 
certain criterion. The best network in each parametric SA is the one exhibiting the smallest 
average relative error (called performance) for all learning data. 

TABLE 2. Implemented ANN features (F) 1-5.
a

FEATURE 
METHOD

F1 F2 F3 F4 F5

Qualitative 
Var Represent

Dimensional 
Analysis

Input 
Dimensionality 

Reduction

%
Train- Valid-

Test
Input 

Normalization

1 Boolean 
Vectors Yes Linear Correlation 80-10-10 Linear Max Abs

2 Eq Spaced in 
]0,1] No Auto-Encoder 70-15-15 Linear [0, 1]

3 - - - 60-20-20 Linear [-1, 1]

4 - - Ortho Rand Proj 50-25-25 Nonlinear

5 - - Sparse Rand Proj - Lin Mean Std

6 - - No - No
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TABLE 3. Implemented ANN features (F) 6-10.

FEATURE 
METHOD

F6 F7 F8 F9 F10

Output 
Transfer Output Normalization Net 

Architecture
Hidden 
Layers Connectivity

1 Logistic Lin [a, b] = 0.7[φ
min

, φ
max

] MLPN 1 HL Adjacent Layers

2 - Lin [a, b] = 0.6[φ
min

, φ
max

] RBFN 2 HL Adj Layers + In-Out

3 Hyperbolic 
Tang Lin [a, b] = 0.5[φ

min
, φ

max
] - 3 HL Fully-Connected

4 - Linear Mean Std - - -

5 Bilinear No - - -

6 Compet - - - -

7 Identity - - - -

TABLE 4. Implemented ANN features (F) 11-15.

FEATURE 
METHOD

F11 F12 F13 F14 F15

Hidden Transfer Parameter Initialization Learning 
Algorithm

Performance 
Improvement

Training 
Mode

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch

2 Identity-Logistic Rands BPA - Mini-Batch

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online

4 Bipolar Randnr (W) + Rands (b) ELM - -

5 Bilinear Randsmall mb ELM - -

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - -

7 Sinusoid SVD CI-ELM - -

8 Thin-Plate Spline MB SVD - - -

9 Gaussian - - - -

10 Multiquadratic - - - -

11 Radbas - - - -

Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i) maximum 
error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All 
abovementioned errors are relative errors (expressed in %) based on the following 
definition, concerning a single output variable and data pattern,
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                                                                  (1)

where (i) d
qp

 is the qth desired (or target) output when pattern p within iteration i (p=1,…, 
P

i
) is presented to the network, and (ii) y

qLp 
is

 
net’s qth output for the same data pattern. 

Moreover, denominator in eq. (1) is replaced by 1 whenever |d
qp

| < 0.05 – d
qp

 in the 
nominator keeps its real value.  This exception to eq. (1) aims to reduce the apparent 
negative effect of large relative errors associated to target values close to zero. Even so, 
this trick may still lead to (relatively) large solution errors while groundbreaking results 
are depicted as regression plots (target vs. predicted outputs).    

Maximum Error
This variable measures the maximum relative error, as defined by eq. (1), among all 
output variables and learning patterns.

Percentage of Errors > 3%
This variable measures the percentage of relative errors, as defined by eq. (1), among all 
output variables and learning patterns, that are greater than 3%.

Performance
In functional approximation problems, network performance is defined as the average 
relative error, as defined in eq. (1), among all output variables and data patterns being 
evaluated (e.g., training, all data). 

Software Validation 

Several benchmark datasets/functions were used to validate the developed software, 
involving low- to high-dimensional problems and small to large volumes of data. Due 
to paper length limit, validation results are not presented herein, but they were made 
public online [49]. 

Parametric Analysis Results
 
Aiming to reduce the computing time by cutting in the number of combos to be run 
—note that all features combined lead to hundreds of millions of combos— the whole 
parametric simulation was divided into nine parametric SAs, where in each one feature 
7 only takes a single value. This measure aims to make the performance ranking of all 
combos within each “small” analysis more “reliable,” since results used for comparison 
are based on target and output datasets as used in ANN training and yielded by the 
designed network, respectively (they are free of any postprocessing that eliminates 
output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs 
aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while 
adopting a single popular method for each of the remaining features (F

3
: 6, F

4
: 2, F

6
: {1 

or 7}, F
7
: 1, F

9
: 1, F

10
: 1, F

11
: {3, 9 or 11}, F

12
: 2, F

14
: 1, F

15
: 1—see Tables 2-4)—SA 1 involved 

learning algorithms 1-3 and SA 2 involved the ELM-based counterpart; (ii) the 3rd 
– 7th SAs combined all possible methods from features 3, 4, 6 and 7, and concerning 
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all other features, adopted the methods integrating the best combination from the 
aforementioned first SA; (iii) the 8th SA combined all possible methods from features 
11, 12 and 14, and concerning all other features, adopted the methods integrating the 
best combination (results compared after postprocessing) among the previous five sub-
analyses; and lastly (iv) the 9th SA combined all possible methods from features 9, 10 
and 15, and concerning all other features, adopted the methods integrating the best 
combination from the previous analysis. Summing up the ANN feature combinations for 
all parametric SAs, a total of 475 combos were run for this work.  

ANN feature methods used in the best combo from each of the abovementioned nine 
parametric sub-analyses are specified in Table 5 (the numbers represent the method 
number as in Tables 2-4). Table 6 shows the corresponding relevant results for those 
combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all described 
in section 3, and evaluated for all learning data), (iv) total number of hidden nodes 
in the model, and (v) average computing time per example (including data pre- and 
post-processing). All results shown in Table 6 (i) were obtained for single ANNs only, 
since no NNC networks yielded better results for this particular problem, and (ii) are 
based on target and output datasets computed in their original format, i.e., free of 
any transformations due to output normalization and/or dimensional analysis.  The 
microprocessors used in this work have the following features: OS: Win10Home 64bits, 
RAMs: 48 GB, Local Disk Memory: 1 TB, CPUs: Intel® Core™ i7 8700K @ 3.70-4.70 GHz.

TABLE 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3

2 1 2 6 2 2 7 1 2 1 1 9 2 5 1 3

3 1 2 6 3 5 1 1 1 1 1 3 2 3 1 3

4 1 2 1 1 5 1 2 1 1 1 3 2 3 1 3

5 1 2 1 2 5 1 3 1 1 1 3 2 3 1 3

6 1 2 6 4 5 7 4 1 1 1 3 2 3 1 3

7 1 2 6 3 5 5 5 1 1 1 3 2 3 1 3

8 1 2 6 3 5 5 5 1 1 1 3 5 3 1 3

9 1 2 6 3 5 5 5 1 2 3 3 5 3 1 3

v
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TABLE 6. Performance results for the best design from each parametric sub-analysis.

SA

ANN

Max Error 
(%)

Performance 
All Data

(%)
Errors > 3% 

(%)
Total Hidden 

Nodes
Running Time / 

Data Point
(s)

1 0.7 0.0 0.0 28 1.93E-04

2 265.3 15.6 72.4 90 9.80E-05

3 0.8 0.0 0.0 28 1.51E-04

4 0.9 0.0 0.0 28 1.29E-04

5 0.8 0.0 0.0 28 1.44E-04

6 0.1 0.0 0.0 28 1.01E-04

7 26.6 1.5 14.3 28 1.26E-04

8 17.0 1.2 12.4 28 1.41E-04

9 0.0 0.0 0.0 28 1.35E-04

Proposed ANN-Based Model

The proposed model is the one, among the best ones from all parametric SAs, exhibiting 
the lowest maximum error (SA 9). That model is characterized by the ANN feature 
methods {1, 2, 6, 3, 5, 5, 5, 1, 2, 3, 3, 5, 3, 1, 3} in Tables 2-4. Aiming to allow implementation 
of this model by any user, all variables/equations required for (i) data preprocessing, (ii) 
ANN simulation, and (iii) data postprocessing are presented in 3.7.1-3.7.3, respectively. 
The proposed model is a single MLPN with four layers and a distribution of nodes/layer 
of 7-14-14-1. Concerning connectivity, the network is fully-connected, and the hidden 
and output transfer functions are all Hyperbolic Tangent and Bilinear, respectively. 
The network was trained using the Levenberg-Marquardt algorithm (978 epochs). 
After design, the average network computing time concerning the presentation of a 
single example (including data pre/postprocessing) is 1.35E-04 s—Figure 4 depicts a 
simplified scheme of some network key features. Lastly, all relevant performance results 
concerning the proposed ANN are illustrated in 3.7.4. The obtained ANN solution for 
every data point can be found in [40].

inputs outputs

MLPN
(computing time = 1.35E-04 s/example)

7 14 14 1

FIGURE 4. Proposed 7-14-14-1 fully-connected MLPN—simplified scheme.
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It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it 
means the former is to be added to all columns of the latter (valid in MATLAB).

Input Data Preprocessing
For future use of the proposed ANN to simulate new data Y

1,sim
 (7 x P

sim
 matrix), concerning 

P
sim

 patterns, the same data preprocessing (if any) performed before training must be 
applied to the input dataset. That preprocessing is defined by the methods used for 
ANN features 2, 3 and 5 (respectively 2, 6 and 5—see Table 2), which should be applied 
after all (eventual) qualitative variables in the input dataset are converted to numerical 
(using feature 1’s method). Next, the necessary preprocessing to be applied to Y

1,sim
, 

concerning features 2, 3 and 5, is fully described. 

Dimensional Analysis and Dimensionality Reduction
Since dimensional analysis (d.a.) and dimensionality reduction (d.r.) were not carried out, 
one has

                             (2)

Input Normalization
After input normalization, the new input dataset  is defined as a function of the previously 
determined , and they have the same size, reading

                  (3)

ANN-Based Analytical Model
Once the preprocessed input dataset {Y

1,sim
}

n
after(7 x P

sim
 matrix) is determined, the next step 

is to present it to the proposed ANN to obtain the predicted output dataset {Y
4,sim

}
n

after (1 x 
P

sim
 vector), which will be given in the same preprocessed format of the target dataset used 

in learning. In order to convert the predicted outputs to their “original format” (i.e., without 
any transformation due to normalization or dimensional analysis—the only transformation 
visible will be the (eventual) qualitative variables written in their numeric representation), 
some postprocessing is needed, as described in detail in 3.7.3. Next, the mathematical 
representation of the proposed ANN is given, so that any user can implement it to 
determine {Y

4,sim
}

n
after

 
, thus eliminating all rumors that ANNs are “black boxes.”

                (4)



134

Neural network-based analytical model to predict the shear strength of steel girders with a trapezoidal corrugated web11 (19), 122-143

134

Artículo/Article
Sección/Section C

where
  

                                                 (5)

Arrays W
j-s 

and b
s
 are stored online in Developer (2018b) [50], aiming to avoid an overlong 

article and ease model’s implementation by any interested reader.

Output Data Postprocessing
In order to transform the output dataset obtained by the proposed ANN, {Y

4,sim
}

n
after (1 x 

P
sim

 vector),  to its original format (Y
4,sim

), i.e., without the effects of dimensional analysis 
and/or output normalization (possibly) taken in target dataset preprocessing prior 
training, one has

                                                          (6)

since no output normalization nor dimensional analysis were carried out.

Performance Results
Finally, results yielded by the proposed ANN, in terms of performance variables defined 
in sub-section 3.4, are presented in this section in the form of several graphs: (i) a 
regression plot per output variable (Figure 5), where network target and output data 
are plotted, for each data point, as x- and y- coordinates, respectively—a measure of 
quality is given by the Pearson Correlation Coefficient (R); (ii) a performance plot (Figure 
6), where performance (average error) values are displayed for several learning datasets; 
and (iii) an error plot (Figure 7), where values concern all data (iii

1
) maximum error and 

(iii
2
) % of errors greater than 3%.

FIGURE 5. Regression plot for the proposed ANN (see output variable in Figure 1).
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Training Validation Testing All

0.0 % 0.0 % 0.0 % 0.0 %

All data max error % errors > 3 %

0.2% 0.0%

FIGURE 6. Performance plot (mean errors) for the proposed ANN.

ANN-BASED VS. EXISTING MODELS

Shear strength of steel I-girders is controlled by buckling and/or shear yielding of 
the corrugated web. Shear buckling of corrugated webs is often classified as local 
buckling, global buckling, and interactive buckling, as exemplified in Figure 8 via the 
FEA-based displacement contours for those elastic buckling modes. Global buckling 
involves multiple folds and the buckled shape extends diagonally over the height of 
the web. Local buckling is controlled by deformations within a single “fold” of the web. 
The interactive shear buckling mode is attributed to the interaction between local and 
global shear buckling modes.
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(A) Local buckling

(B) Interactive buckling

(C) Buckling

FIGURE 8. Shear buckling modes via FEA.

Local shear buckling

The local elastic shear buckling stress of a corrugated web can be predicted using classic 
plate buckling theory [51]. A single parallel or inclined fold is assumed to be supported 
by the adjacent folds and steel flanges. The corresponding local elastic shear buckling 
stress, τe

cr,L
 is

                                           (7)

where (i) w is the maximum fold width, max(b, c), and (ii) k
L
 is the local shear buckling 

coefficient, which depends on the boundary conditions and the fold aspect ratio – k
L
 lies 

between 5.34 (assuming simply supported edges) and 8.98 (assuming fixed edges). For 
practical design purposes, k

L
=5.34 is recommend by Moon et al. (2009) [24].

Global shear buckling

An expression for the global elastic shear buckling stress of a corrugated steel plate (τe
cr,G

) 
was developed by Easley and McFarland (1969) [15] using orthotropic plate theory, reading
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                                                  (8)

where (i) k
G
 is the global shear buckling coefficient, and (ii) D

x
 and D

y
 are the bending 

stiffnesses per unit length of the corrugated web with respect to its central principal 
axes x and y, respectively. Easley (1975) [52] proposed that k

G
 varies between 36 

(assuming the web pin-ended by the flanges) and 68.4 (assuming the web fix-ended by 
the flanges). Elgaaly et al (1996) [19] suggested that k

G
 should be taken as 31.6 for simply 

supported boundaries and 59.2 for the clamped counterpart. D
x
 and D

y
 for trapezoidal 

corrugated webs can be determined as:

                                                         (9)

                  	                                                   (10)

where I
x
 is the moment of inertia about the x-axis, 

Interactive shear buckling
The interactive shear buckling mode is attributed to the interaction between local and 
global modes and governs shear buckling strength. Lindner & Aschinger (1988) [16] first 
proposed the corresponding elastic shear buckling stress formula (τe

cr,I,
) 

                                    (11)

where exponent n is an integer—several researchers have proposed distinct values [23, 
25, 27, 30].

Shear strength

Previous studies [23, 25] have shown that shear strength of corrugated steel webs was 
generally controlled by interactive shear buckling. In this context, the shear buckling 
non-dimensional slenderness (λ

I,n
) of a corrugated steel web is defined as

                                           (12)

where τ
y
 is the tangential yield stress (typically f

y 
/ √3, being f

y
 the normal yield stress). 

Driver et al. (2006) [21] proposed eq. (11) to calculate the shear capacity of corrugated 
steel webs for all types of shear failures, reading (n=2)
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                                          (13)

In case any elastic shear buckling stress (τe
cr, G

 or τe
cr, L

) exceeds 80% of the shear yield 
stress τ

y
, its value in eq. (13) should be replaced by an inelastic counterpart given by 

Elgaaly et al. (1996) [19].  

                                           (14)

Metwally (1998) [10] proposed the following equation to calculate the shear capacity of 
corrugated steel webs (using n=2 in eq. (11))

                                      (15)

Sauce and Braxtan (2011) [25] summarized a large number of previous experimental 
data and selected 22 groups of results to fit eq. (16), for the prediction of the shear 
capacity of corrugated steel webs (using n=3 in eq. (11))

                              (16)

Leblouba et al. (2017a) [29], based on 113 test results collected from the literature and 12 
tests carried out by themselves, developed the following analytical model (based on the 
hyperbolic Richards equation) to calculate the shear strength of corrugated steel webs 
(using n=4 in eq. (11))

                               (17)

Figure 9 compares the shear strengths yielded by the analytical models presented before 
(τ

D
, τ

EL
, τ

Sauce
, τ

Leblouba
, τ

ANN
) to those obtained experimentally (τe) for the 210 steel girders 

assessed in this work [40]. The average ratios τ
D
/τ

e
, τ

EL
/τ

e
, τ

Sauce
/τ

e
, τ

Leblouba
/τ

e
 are 0.78, 0.87, 

0.82 and 0.83, with standard deviations of 0.13, 0.16, 0.13 and 0.11, respectively. It can be 
found that all those models underestimate the shear strength of trapezoidal corrugated 
web girders. For comparison, the average value of τ

ANN
 /τ

e
 is 1.00, with a standard 

deviation of 0.00. The major improvement of the proposed ANN-based analytical model 
(see sub-section 3.7), as compared to the existing calculation methods, is quite clear in 
Figure 9, where the x-axis shows the predicted shear capacity τmodel (τ

ANN
, τ

D
, τ

EL
, τ

Sauce
, 

τ
Leblouba

) and the y-axis shows the experimental counterpart τ
e
. 
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FIGURE 9. Comparison between tested and predicted shear strength for several proposed models.

DISCUSSION

In future publications it will be guaranteed that the validation and testing data subsets 
will be composed only by points where at least one variable (which does not have to 
be the same for all) takes a value not taken in the training subset by that same variable. 
Based on very recent empirical conclusions by Abambres, the author believes it will lead 
to more robust ANN-based analytical models concerning their generalization ability (i.e., 
prediction accuracy for any data point within the variable ranges of the design data).

CONCLUSIONS

This paper describes how artificial neural networks (ANN) can be used to predict the 
shear capacity of steel girders with a trapezoidal corrugated web and proposes an 
analytical model for that purpose. The developed model was designed from a 210-point 
database of test results available in the literature. Seven governing (geometrical and 
material) parameters were identified as input variables, and the ultimate shear stress 
(assumed uniform along web’s height) at failure was considered as the target/output 
variable for the ANN simulations. The proposed ANN-based analytical model yielded 
maximum and mean relative errors of 0.0% concerning all the 210 test results previously 
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collected. Figure 9 shows that the ANN-based approach clearly outperforms the existing 
calculation models assessed in this work, for the dataset considered (made available at 
Developer 2018a)—latter models exhibit mean errors greater than 13%.

The focus of this study was not to assess the mechanics underlying the behavior of 
corrugated web steel girders, but parametric studies by means of accurate and robust 
ANN-based models make it possible to evaluate and improve existing mechanical 
models. 
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