
Editado por /
Edited by:
Eva O.L. Lantsoght

Recibido /
Received:
2018/11/15

Aceptado /
Accepted:
2018/12/17

Publicado en línea
/pdf online first:
2019/01/30

Final PDF:
2019/05/30 124

Potential of neural networks for
structural damage localization

Miguel Abambres1*, Marília Marcy2, Graciela Doz3

1 Research & Development, Abambres’ Lab, 1600-275 Lisbon, Portugal; ORCID: 0000-0003-4107-8501
2 Dep of Civil and Environmental Eng, Federal Univ. of Campina Grande, Campina Grande, Brazil;
ORCID: 0000-0001-5425-1751
3 Dep of Civil and Environmental Eng, University of Brasília, Brasília, Brazil; ORCID: 0000-0001-6428-4012
*Autor para Correspondencia / Corresponding Author, e-mail: abambres@netcabo.pt

Potencial de redes neuronales
para localización de daño estructural

Abstract
Fabrication technology and structural engineering states-of-art have led to a growing use
of slender structures, making them more susceptible to static and dynamic actions that
may lead to some sort of damage. In this context, regular inspections and evaluations are
necessary to detect and predict structural damage and establish maintenance actions
able to guarantee structural safety and durability with minimal cost. However, these
procedures are traditionally quite time- consuming and costly, and techniques allowing
a more effective damage detection are necessary. This paper assesses the potential
of Artificial Neural Network (ANN) models in the prediction of damage localization in
structural members, as function of their dynamic properties – the three first natural
frequencies are used. Based on 64 numerical examples from damaged (mostly) and
undamaged steel channel beams, an ANN-based analytical model is proposed as a
highly accurate and efficient damage localization estimator. The proposed model yielded
maximum errors of 0.2 and 0.7 % concerning 64 numerical and 3 experimental data
points, respectively. Due to the high- quality of results, authors’ next step is the application
of similar approaches to entire structures, based on much larger datasets.

Keywords: Structural Health Monitoring; Damage Localization; Steel Beams; Dynamic
Properties; Natural Frequencies; Artificial Neural Networks.

Resumen
Los avances de la tecnologia de fabricacion y de la ingenieria estructural han conducido
a la utilización crescente de estructuras esbeltas, y consecuentemente mas vulnerables
a acciones estáticas y dinámicas que puedan generar algun tipo de daño. En este
contexto, inspecciones regulares y evaluaciones son necesarias para detectar y predecir
daño en las estructuras, y estabelecer acciones de mantenimiento que puedan garantizar
la seguridad y durabilidad estructurales bajo un costo optimizado. Sin embargo, estos
procedimientos son tipicamente muy morosos y costosos, y tecnicas que permitan
una deteccion del daño de forma mas efectiva son necesarias. Este articulo evalua el

11 (18), 124 – 153

Artículo/Article
Sección/Section C

 http://dx.doi.org/10.18272/aci.v11i2.1305

potencial de las redes neuronales artificiales (ANN, en Inglés) en la prediccion de la
localización del daño en elementos estructurales, como funcion de las caractaeristicas
dinámicas de los mismos – las trés primeras frequencias naturales de vibracion son
utilizadas. Basado en 64 ejemplos numericos de vigas en acero con seccion en ‘canal’,
con (mayoritariamente) y sin daño, este trabajo propone un modelo analitico basado en
ANN que es caracterizado por una alta precision y eficiencia. El modelo propuesto originó
errores de 0.2 y 0.7% relativamente a 64 y 3 puntos experimentales, respectivamente.
Debida a la elevada calidad de los resultados, el proximo paso de estes autores sera
la aplicación de abordagenes similares a estructuras completas de puentes o edificios,
consecuentemente involucrando bases de datos mucho más volumosas.

Palabras Clave: Monitoreo de salud estructural; Localización de daño; Vigas en Acero;
Propiedades Dinámicas; Frecuencias Naturales; Redes Neuronales Artificiales.

INTRODUCTION

Fabrication technology and structural engineering states-of-art have led to a growing
use of slender structures in construction industry. Those structures (or structural
members) are more susceptible to static and dynamic actions that may lead to damage
and/or excessive vibration. In this context, regular inspections and evaluations are
necessary to detect and predict structural damage and establish maintenance actions
able to guarantee structural safety and durability with minimal cost. However, these
procedures are traditionally quite time-consuming and costly. Thus, techniques allowing
a more efficient and less resource-dependent damage detection are in high demand
and will contribute to a more sustainable built environment.

In recent years, several authors (e.g., [1-3]) have concluded that structural damage
detection is a problem of pattern recognition, in which a classification is made as
function of physical properties of a system. Within machine learning, several types of
Artificial Neural Networks (ANN) (e.g. feedforward nets, self-organizing maps, learning
vector quantization) can become a quite effective damage detection tool when
used in conjunction with the dynamic properties of a system (e.g., [4-5]) – note that
nowadays is quite straight forward the accurate estimation of important dynamic
properties (e.g., natural frequencies) of (possibly damaged) built structural systems
(by means of accelerometers and/or other simple decices, and existing software – e.g.,
ARTeMIS Modal 4.0 [6]). According to Bandara et al. [7] and Ahmed [8], a clear challenge
concerning ANNs is the fact that they typically need structural data of both damaged
and intact structures to be able to classify satisfactorily. If the structure is not considered
damaged in its current state, the information regarding the damaged state will be
unavailable unless detailed structural models are used to generate this information, such
as numerical ones based on the Finite Element Method (FEM).

Several authors have published the application of machine learning for damage
characterization in structural members (e.g., [9-12]). Nonetheless, none of those studies
employed exactly the same structure and input/output variables considered in this work.
Moreover, the accuracy provided by those solutions are typically insufficient (maximum

125

126

Potential of neural networks for structural damage localization11 (18), 124 – 153

126

Artículo/Article
Sección/Section C

error for all data points > 5%) for what the authors of this paper consider to be acceptable
(safe) in structural engineering practice. Thus, this paper primarily aims to assess the
potential of ANN-based models in the prediction of damage localization in structural
members, as function of their dynamic properties – the three first natural frequencies
are used in this work. Based on numerical data from damaged (mostly) and undamaged
steel channel beams, an ANN-based analytical model is proposed and tested for both
numerical and experimental data. Once proved that the approach taken works well for
structural members, authors’ next step (in the very near future) is to apply similar procedures
to entire bridge or building structures.

DATA GATHERING

Inspired by the experimental research of Brasiliano [13], who assessed the effect of
structural damage on natural (free vibration) frequency values, the data used for the
present investigation concerns damaged (mostly) and undamaged ASTM A36 steel
channel beams (U101.6x4.67 [14]) with a length of 2.155 m and free-free boundary
conditions. Sixty-four distinct beams (also called examples or data points in this
manuscript) were simulated in ANSYS FEA software [15] to obtain a 3-input and 1-output
dataset for ANN design. The three first natural frequencies (Hz) of the beam are the
input (independent) variables – see Tab. 1, whereas the damage location is the output
(dependent) variable. The latter is given by the longitudinal distance (m) from beam’s
edge to the mid-point of local cross-section reduction that defines the damage
(see Fig. 1(a)). For the 13 undamaged beams, the damage location adopted is non-
null, randomly taken below 0.005 m, an approach typically providing better ANN-based
approximations, according to authors’ experience.

FIGURE 1. Damaged beam tested by Brasiliano (2005): (a) experimental layout and damage location details, and
(b) undamaged and damaged cross-sections.

Damage Localization
(ANN ouput variable)

Elem. 18 e 19

30 mm

10 mm

101 mm

40
 m

m

5.4
4

m
m

9.84 mm 4.74 mm

101 mm

30
 m

m

5.4
4

m
m

9.84 mm
5.04 mm

a

b

126

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 127

Abambres / Marcy / Doz (2019)

127

TABLE 1. Three first natural frequencies (ANN input variables): numerical vs. test (Brasiliano 2005) results.

Vibration Mode

Undamaged Beam Damaged Beam

Test
(Hz)

FEA
(Hz)

Error FEA
vs Test
(%)

Test
(Hz)

FEA
(Hz)

Error FEA
vs Test
(%)

43.66 42.54 2.6 39.59 41.14 3.9

120.11 117.04 2.6 117.31 117.19 0.1

235.01 229.00 2.6 222.88 222.22 0.3

Timoshenko beam FEs of type BEAM188 [15], characterized by six degrees of freedom
per node, were employed in all numerical models. For validation purposes, the first two
models were used to predict the three first natural frequencies of two beams tested by
Brasiliano [13] (also reported in [16]). These beams are characterized by the material and
geometrical properties mentioned before, being one undamaged/intact and the other
not. The latter was divided into 33 equal longitudinal elements and a 10 mm reduction
of its cross-section (shortening of both flanges) was performed in elements 18 and 19, as
illustrated in Fig. 1. Tab. 1 presents the validation results in terms of natural frequencies,
as well as the corresponding numerical modal shapes. The maximum error of 3.9 %
indicates the suitability of the FE model for the present study. Once validated the
numerical model, 50 other damage scenarios were simulated, varying damage extent
and/or location. The last 12 models were made without damage but under different
temperatures from -5 to 40 degrees Celsius. Considering a room temperature of 22 °C,
distinct Young moduli were adopted as proposed by Callister and Rethwish [17]. The
dataset used in ANN design can be found online in [18]. Next section provides all details
concerning the ANN formulation, analyses and results.

ARTIFICIAL NEURAL NETWORKS

Introduction

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which
the task of having machines acting humanly could not be accomplished, allows us to

“teach” computers how to perform tasks by providing examples of how they should be
done [19]. When there is abundant data (also called examples or patterns) explaining a
certain phenomenon, but its theory richness is poor, machine learning can be a perfect
tool. The world is quietly being reshaped by machine learning, being the Artificial Neural
Network (also referred in this manuscript as ANN or neural net) its (i) oldest [20] and (ii)
most powerful [21] technique. ANNs also lead the number of practical applications,

128

Potential of neural networks for structural damage localization11 (18), 124 – 153

128

Artículo/Article
Sección/Section C

virtually covering any field of knowledge [22-23]. In its most general form, an ANN is a
mathematical model designed to perform a particular task, based in the way the human
brain processes information, i.e. with the help of its processing units (the neurons). ANNs
have been employed to perform several types of real-world basic tasks. Concerning
functional approximation, ANN-based solutions are frequently more accurate than
those provided by traditional approaches, such as multi-variate nonlinear regression,
besides not requiring a good knowledge of the function shape being modelled [24].

The general ANN structure consists of several nodes disposed in L vertical layers (input
layer, hidden layers, and output layer) and connected between them, as depicted in Fig.
2. Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear
transfer (also called activation) function, which receives the so-called net input and
transmits an output (see Fig. 5). All ANNs implemented in this work are called feedforward,
since data presented in the input layer flows in the forward direction only, i.e. every node
only connects to nodes belonging to layers located at the right-hand-side of its layer, as
shown in Fig. 2. ANN’s computing power makes them suitable to efficiently solve small
to large-scale complex problems, which can be attributed to their massively parallel
distributed structure and (ii) ability to learn and generalize, i.e, produce reasonably
accurate outputs for inputs not used during the learning (also called training) phase.

FIGURE 2. Example of a feedforward neural network.

Input
nodes Layer of

hidden
neurons

Layer of
output

neurons

Learning

Each connection between 2 nodes is associated to a synaptic weight (real value), which,
together with each neuron’s bias (also a real value), are the most common types of
neural net unknown parameters that will be determined through learning. Learning is
nothing else than determining network unknown parameters through some algorithm
in order to minimize network’s performance measure, typically a function of the difference
between predicted and target (desired) outputs. When ANN learning has an iterative
nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From previous
knowledge, examples or data points are selected to train the neural net, grouped in the
so-called training dataset. Those examples are said to be “labelled” or “unlabeled”, whether
they consist of inputs paired with their targets, or just of the inputs themselves – learning

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 129

Abambres / Marcy / Doz (2019)

129

is called supervised (e.g., functional approximation, classification) or unsupervised (e.g.,
clustering), whether data used is labelled or unlabeled, respectively. During an iterative
learning, while the training dataset is used to tune network unknowns, a process of
cross-validation takes place by using a set of data completely distinct from the training
counterpart (the validation dataset), so that the generalization performance of the
network can be attested. Once “optimum” network parameters are determined, typically
associated to a minimum of the validation performance curve (called early stop – see Fig.
3), many authors still perform a final assessment of model’s accuracy, by presenting to it
a third fully distinct dataset called “testing”. Heuristics suggests that early stopping avoids
overfitting, i.e. the loss of ANN’s generalization ability. One of the causes of overfitting
might be learning too many input-target examples suffering from data noise, since the
network might learn some of its features, which do not belong to the underlying function
being modelled [25].

FIGURE 3. Cross-validation – assessing network’s generalization ability.

Error

early stop Time

Training

underfitting overfitting

validation

Implemented ANN features

The “behavior” of any ANN depends on many “features”, having been implemented 15 ANN
features in this work (including data pre/post processing ones). For those features, it is
important to bear in mind that no ANN guarantees good approximations via extrapolation
(either in functional approximation or classification problems), i.e. the implemented ANNs
should not be applied outside the input variable ranges used for network training. Since
there are no objective rules dictating which method per feature guarantees the best
network performance for a specific problem, an extensive parametric analysis (composed of
nine parametric sub-analyses) was carried out to find ‘the optimum’ net design. A description
of all implemented methods, selected from state of art literature on ANNs (including
both traditional and promising modern techniques), is presented next – Tabs. 2-4 show
all features and methods per feature. The whole work was coded in MATLAB [26], making
use of its neural network toolbox when dealing with popular learning algorithms (1-3 in
Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations (also
called “combos”) of pre-selected methods for each ANN feature, in order to get performance
results for each designed net, thus allowing the selection of the best ANN according to a
certain criterion. The best network in each parametric SA is the one exhibiting the smallest
average relative error (called performance) for all learning data.

130

Potential of neural networks for structural damage localization11 (18), 124 – 153

130

Artículo/Article
Sección/Section C

It is worth highlighting that, in this manuscript, whenever a vector is added to a matrix, it
means the former is to be added to all columns of the latter (valid in MATLAB).

Qualitative Variable Representation (feature 1)
A qualitative variable taking n distinct “values” (usually called classes) can be represented in
any of the following formats: one variable taking n equally spaced values in]0,1], or 1-of-n
encoding (boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0] represents class 2,
and [0 0 1] represents class 3). After transformation, qualitative variables are placed at the
end of the corresponding (input or output) dataset, in the same original order.

TABLE 2. Implemented ANN features (F) 1-5.

FEATURE
METHOD

F1 F2 F3 F4 F5

Qualitative
Var Represent

Dimensional
Analysis

Input
Dimensionality

Reduction

%
Train- Valid-

Test
Input

Normalization

1 Boolean
Vectors Yes Linear Correlation 80-10-10 Linear Max Abs

2 Eq Spaced in
]0,1] No Auto-Encoder 70-15-15 Linear [0, 1]

3 - - - 60-20-20 Linear [-1, 1]

4 - - Ortho Rand Proj 50-25-25 Nonlinear

5 - - Sparse Rand Proj - Lin Mean Std

6 - - No - No

Dimensional Analysis (feature 2)
The most widely used form of dimensional analysis is the Buckingham’s π-theorem, which
was implemented in this work as described in [27].

Input Dimensionality Reduction (feature 3)
When designing any ANN, it is crucial for its accuracy that the input variables are
independent and relevant to the problem [28, 29]. There are two types of dimensionality
reduction, namely (i) feature selection (a subset of the original set of input variables is used),
and (ii) feature extraction (transformation of initial variables into a smaller set). In this work,
dimensionality reduction is never performed when the number of input variables is less than
six. The implemented methods are described next.

Linear Correlation
In this feature selection method, all possible pairs of input variables are assessed with
respect to their linear dependence, by means of the Pearson correlation coefficient R

XY
,

where X and Y denote any two distinct input variables. For a set of n data points (x
i
, y

i
),

R
XY

 is defined by

(1)

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 131

Abambres / Marcy / Doz (2019)

131

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, respectively,
and 𝑥̅ and 𝑦̅ are the mean values of each variable. In this work, cases where |R

XY
| ≥ 0.99

indicate that one of the variables in the pair must be removed from the ANN modelling.
The one to be removed is the one appearing less in the remaining pairs (X, Y) where
|R

XY
| ≥ 0.99. Once a variable is selected for removal, all pairs (X, Y) involving it must be

disregarded in the subsequent steps for variable removal.

Auto-Encoder

TABLE 3. Implemented ANN features (F) 6-10.

FEATURE
METHOD

F6 F7 F8 F9 F10

Output
Transfer Output Normalization Net

Architecture
Hidden
Layers Connectivity

1 Logistic Lin [a, b] = 0.7[φ
min

, φ
max

] MLPN 1 HL Adjacent Layers

2 - Lin [a, b] = 0.6[φ
min

, φ
max

] RBFN 2 HL Adj Layers + In-Out

3 Hyperbolic
Tang Lin [a, b] = 0.5[φ

min
, φ

max
] - 3 HL Fully-Connected

4 - Linear Mean Std - - -

5 Bilinear No - - -

6 Compet - - - -

7 Identity - - - -

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-
encoder (AE). After training, the hidden layer output (y

2p
) for the presentation of each

problem’s input pattern (y
1p

) is a compressed vector (Q
2
 x 1) that can be used to replace

the original input layer by a (much) smaller one, thus reducing the size of the ANN
model. In this work, Q

2
=round(Q

1
/2) was adopted, being round a function that rounds

the argument to the nearest integer. The implemented AE was trained using the
‘trainAutoencoder(…)’ function from MATLAB’s neural net toolbox. In order to select
the best AE, 40 AEs were simulated, and their performance compared by means of the
performance variable defined in sub-section 3.4. Each AE considered distinct (random)
initialization parameters, half of the models used the ‘logsig’ hidden transfer functions,
and the other half used the ‘satlin’ counterpart, being the identity function the common
option for the output activation. In each AE, the maximum number of epochs – number
of times the whole training dataset is presented to the network during learning, was
defined (regardless the amount of data) by

(2)

Concerning the learning algorithm used for all AEs, no L
2
 weight regularization was

employed, which was the only default specification not adopted in ‘trainAutoencoder(…)’.

132

Potential of neural networks for structural damage localization11 (18), 124 – 153

132

Artículo/Article
Sección/Section C

TABLE 4. Implemented ANN features (F) 11-15.

FEATURE
METHOD

F11 F12 F13 F14 F15

Hidden Transfer Parameter Initialization Learning
Algorithm

Performance
Improvement

Training
Mode

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch

2 Identity-Logistic Rands BPA - Mini-Batch

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online

4 Bipolar Randnr (W) + Rands (b) ELM - -

5 Bilinear Randsmall mb ELM - -

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - -

7 Sinusoid SVD CI-ELM - -

8 Thin-Plate Spline MB SVD - - -

9 Gaussian - - - -

10 Multiquadratic - - - -

11 Radbas - - - -

Orthogonal and Sparse Random Projections
This is another feature extraction technique aiming to reduce the dimension of input
data Y

1
 (Q

1
 x P) while retaining the Euclidean distance between data points in the new

feature space. This is attained by projecting all data along the (i) orthogonal or (ii) sparse
random matrix A (Q

1
 x Q

2
, Q

2
< Q

1
), as described by Kasun et al. [29].

Training, Validation and Testing Datasets (feature 4)
Four distributions of data (methods) were implemented, namely p

t
-p

v
-p

tt
 = {80-10-10,

70-15-15, 60-20-20, 50-25-25}, where p
t
-p

v
-p

tt
represent the amount of training, validation

and testing examples as % of all learning data (P), respectively. Aiming to divide learning
data into training, validation and testing subsets according to a predefined distribution
p

t
-p

v
-p

tt
, the following algorithm was implemented (all variables are involved in these

steps, including qualitative ones after converted to numeric – see 3.3.1):

•	 For each variable q (row) in the complete input dataset, compute its minimum and
maximum values.

•	 Select all patterns (if some) from the learning dataset where each variable takes
either its minimum or maximum value. Those patterns must be included in the
training dataset, regardless what p

t
 is. However, if the number of patterns “does not

reach” p
t
, one should add the missing amount, providing those patterns are the

ones having more variables taking extreme (minimum or maximum) values.

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 133

Abambres / Marcy / Doz (2019)

133

•	 In order to select the validation patterns, randomly select p
v
 / (p

v
 + p

tt
) of those

patterns not belonging to the previously defined training dataset. The remainder
defines the testing dataset. It might happen that the actual distribution p

t
– p

v
 – p

tt
 is

not equal to the one imposed a priori (before step 1), which is due to the minimum
required training patterns specified in step 2.

Input Normalization (feature 5)
The progress of training can be impaired if training data defines a region that is relatively
narrow in some dimensions and elongated in others, which can be alleviated by
normalizing each input variable across all data patterns. The implemented techniques
are the following:

Linear Max Abs
Lachtermacher and Fuller [30] proposed a simple normalization technique given by

 (3)

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input
variable for all learning patterns, respectively. Notation “:” in the column index, indicate the
selection of all columns (learning patterns).

Linear [0, 1] and [-1, 1]
A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*,
b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from

 (4)

Ranges [a, b]=[0, 1] anAd [a, b]=[-1, 1] were considered.

Nonlinear
Proposed by Pu and Mesbahi [31], although in the context of output normalization, the
only nonlinear normalization method implemented for input data reads

(5)

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the
number of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the argument,
and (iv) C(i) is the average of two values concerning variable i, C1(i) and C2(i), where the
former leads to a minimum normalized value of 0.2 for all patterns, and the latter leads
to a maximum normalized value of 0.8 for all patterns.

Linear Mean Std
Tohidi and Sharifi [32] proposed the following technique

(6)

where 𝜇𝑌1(𝑖,:) and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized
values (all patterns) stored by variable i.

134

Potential of neural networks for structural damage localization11 (18), 124 – 153

134

Artículo/Article
Sección/Section C

Output Transfer Functions (feature 6)

Logistic

The most usual form of transfer functions is called Sigmoid. An example is the logistic
function given by

(7)

Hyperbolic Tang
The Hyperbolic Tangent function is also of sigmoid type, being defined as

 (8)

Bilinear

The implemented Bilinear function is defined as

 (9)

Identity

The Identity activation is often employed in output neurons, reading

 (10)

Output Normalization (feature 7)
Normalization can also be applied to the output variables so that, for instance, the
amplitude of the solution surface at each variable is the same. Otherwise, training may
tend to focus (at least in the earlier stages) on the solution surface with the greatest
amplitude [33]. Normalization ranges not including the zero value might be a useful
alternative since convergence issues may arise due to the presence of many small (close
to zero) target values [34]. Four normalization methods were implemented. The first
three follow eq. (4), where (i) [a, b] = 70% [φmin, φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii)
[a, b] = 50% [φmin, φmax], being [φmin, φmax] the output transfer function range, and [a, b]
determined to be centered within [φmin, φmax] and to span the specified % (e.g., (b-a) =
0.7 (φmax – φmin)). Whenever the output transfer functions are unbounded (Bilinear and
Identity), it was considered [a, b] = [0, 1] and [a, b] = [-1, 1], respectively. The fourth
normalization method implemented is the one described by eq. (6).

Network Architecture (feature 8)

Multi-Layer Perceptron Network (MLPN)
This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-2-1 MLPN
(3 input nodes, 2 hidden neurons and 1 output neuron), where units in each layer link only
to some nodes located ahead. At this moment, it is appropriate to define the concept of
partially- (PC) and fully-connected (FC) ANNs. In this work a FC feedforward network is
characterized by having each node connected to every node in a different layer placed
forward – any other type of network is said to be PC (e.g., the one in Fig. 2). According
to Wilamowski [35], PC MLPNs are less powerful than MLPN where connections across
layers are allowed, which usually lead to smaller networks (less neurons).

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 135

Abambres / Marcy / Doz (2019)

135

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic
layer and “ql” a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to
the top node). Fig. 5 represents the model of a generic neuron (l = 2,…, L), where (i) p
represents the data pattern presented to the network, (ii) subscripts m = 1,…, Qn and n
= 1,…, l-1 are summation indexes representing all possible nodes connecting to neuron
“ql” (recall Fig. 4), (iii) b

ql
 is neuron’s bias, and (iv) w

mnql
 represents the synaptic weight

connecting units “mn” and “ql”. Neuron’s net input for the presentation of pattern p (Sqlp)
is defined as

(11)

where ym1p is the value of the mth network input concerning example p. The output of a
generic neuron can then be written as (l = 2,…, L)

(12)

where φl is the transfer function used for all neurons in layer l.

FIGURE 4. Generic multi-layer feedforward network.

1

1

q

Q
l

2 l L

11 12 1l

q1 q2 ql

Q11 Q22 Qll

1L

qL

QLL

Inputs Hidden Neurons Outputs

FIGURE 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L)

bql

Sqlp

yqlp = 𝜑𝜑l(Sqlp)ymnp wmnql 𝜑𝜑l

.

136

Potential of neural networks for structural damage localization11 (18), 124 – 153

136

Artículo/Article
Sección/Section C

Radial-Basis Function Network (RBFN)

Although having similar topologies, RBFN and MLPN behave very differently due to distinct
hidden neuron models – unlike the MLPN, RBFN have hidden neurons behaving differently
than output neurons. According to Xie et al. [36], RBFN (i) are specially recommended in
functional approximation problems when the function surface exhibits regular peaks and
valleys, and (ii) perform more robustly than MLPN when dealing with noisy input data.
Although traditional RBFN have 3 layers, a generic multi-hidden layer (see Fig. 4) RBFN
is allowed in this work, being the generic hidden neuron’s model concerning node “l1l2”
(l1 = 1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 6. In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 (called RBF
center) are vectors of the same size (𝜉𝑧𝑙1𝑙2 denotes de z component of vector 𝜉𝑙1𝑙2 , and it is a
network unknown), being the former associated to the presentation of data pattern p, (ii)
𝜎𝑙1𝑙2 is called RBF width (a positive scalar) and also belongs, along with synaptic weights and
RBF centers, to the set of network unknowns to be determined through learning, (iii) 𝜑𝑙2
is the user-defined radial basis (transfer) function (RBF), described in eqs. (20)-(23), and (iv)

𝑦𝑙1𝑙2𝑝 is neuron’s output when pattern p is presented to the network. In ANNs not involving
learning algorithms 1-3 in Tab. 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 are defined as (two versions of 𝑣𝑙1𝑙2𝑝
where implemented and the one yielding the best results was selected)

or

 (13)

and

whereas the RBFNs implemented through MATLAB neural net toolbox (involving
learning algorithms 1-3 in Tab. 4) are based on the following definitions

 (14)

Lastly, according to the implementation carried out for initialization purposes (described
in 3.3.12), RBF center vectors per hidden layer (one per hidden neuron) are initialized as
integrated in a matrix (termed RBF center matrix) having the same size of a weight matrix
linking the previous layer to that specific hidden layer, and (ii) RBF widths (one per hidden
neuron) are initialized as integrated in a vector (called RBF width vector) with the same size
of a hypothetic bias vector.

Hidden Nodes (feature 9)
Inspired by several heuristics found in the literature for the determination of a suitable
number of hidden neurons in a single hidden layer net [37-39], each value in hntest,
defined in eq. (15), was tested in this work as the total number of hidden nodes in the
model, i.e. the sum of nodes in all hidden layers (initially defined with the same number
of neurons). The number yielding the smallest performance measure for all patterns

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 137

Abambres / Marcy / Doz (2019)

137

(as defined in 3.4, with outputs and targets not postprocessed), is adopted as the best
solution. The aforementioned hntest is defined by

 (15)

where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and Pt
are the number of learning and training patterns, respectively, and (iii) F13 is the number
of feature 13’s method (see Tab. 4).

Connectivity (feature 10)
For this ANN feature, three methods were implemented, namely (i) adjacent layers –
only connections between adjacent layers are made possible, (ii) adjacent layers + input-
output – only connections between (ii1) adjacent and (ii2) input and output layers are
allowed, and (iii) fully- connected (all possible feedforward connections).

FIGURE 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1).

Hidden Transfer Functions (feature 11)
Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear –
eq. (9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer
functions. During software validation it was observed that some hidden node outputs
could be infinite or NaN (not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to
numerical issues concerning some hidden transfer functions and/or their calculated input.
In those cases, it was decided to convert infinite to unitary values and NaNs to zero (the
only exception was the bipolar sigmoid function, where NaNs were converted to -1). Other
implemented trick was to convert possible Gaussian function’s NaN inputs to zero.

138

Potential of neural networks for structural damage localization11 (18), 124 – 153

138

Artículo/Article
Sección/Section C

Identity-Logistic

In Gunaratnam and Gero [40], issues associated with flat spots at the extremes of a
sigmoid function were eliminated by adding a linear function to the latter, reading

(16)

Bipolar
The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler [41],
ranging in [-1, 1], reads

 (17)

Positive Saturating Linear

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer function,
ranging in [0, 1], is defined as

 (18)

Sinusoid

Concerning less popular transfer functions, reference is made in [42] to the sinusoid,
which in this work was implemented as

 (19)

Radial Basis Functions (RBF)

Although Gaussian activation often exhibits desirable properties as a RBF, several authors
(e.g., [43]) have suggested several alternatives. Following nomenclature used in 3.3.8, (i)
the Thin-Plate Spline function is defined by the next function is employed as Gaussian-
type function when learning algorithms 4-7 are used (see Tab. 4)

 (20)

the Multiquadratic function is given by

(21)

and (iv) the Gaussian-type function (called “radbas” in MATLAB toolbox) used by RBFNs
trained with learning algorithms 1-3 (see Tab. 4), is defined by

(22)

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 139

Abambres / Marcy / Doz (2019)

139

where || … || denotes the Euclidean distance in all functions.

(23)

Parameter Initialization (feature 12)
The initialization of (i) weight matrices (Q

a
 x Q

b
, being Qa and Qb node numbers in layers

a and b being connected, respectively), (ii) bias vectors (Q
b
 x 1), (iii) RBF center matrices (Q

c
-1

x Q
c
, being c the hidden layer that matrix refers to), and (iv) RBF width vectors (Q

c
 x 1), are

independent and in most cases randomly generated. For each ANN design carried out in
the context of each parametric analysis combo, and whenever the parameter initialization
method is not the “Mini-Batch SVD”, ten distinct simulations varying (due to their random
nature) initialization values are carried out, in order to find the best solution. The implemented
initialization methods are described next.

Midpoint, Rands, Randnc, Randnr, Randsmall
These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF center
matrices only (not vectors). All columns of the initialized matrix are equal, being each entry
equal to the midpoint of the (training) output range leaving the corresponding initial
layer node – recall that in weight matrices, columns represent each node in the final layer
being connected, whereas rows represent each node in the initial layer counterpart. Rands
generates random numbers with uniform distribution in [-1, 1]. Randnc (only used to initialize
matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes each
array column to 1 (unitary Euclidean norm). Randnr (only used to initialize matrices) generates
random numbers with uniform distribution in [-1, 1], and normalizes each array row to 1
(unitary Euclidean norm). Randsmall generates random numbers with uniform distribution
in [-0.1, 0.1].

Rand [-lim, lim]
This function is based on the proposal in [44], and generates random numbers with
uniform distribution in [-lim, lim], being lim layer-dependent and defined by

 (24)

where a and b refer to the initial and final layers integrating the matrix being initialized,
and L is the total number of layers in the network. In the case of a bias or RBF width
vector, lim is always taken as 0.5.

SVD
Although Deng et al. [45] proposed this method for a 3-layer network, it was implemented
in this work regardless the number of hidden layers.

Mini-Batch SVD
Based on [45], this scheme is an alternative version of the former SVD. Now, training
data is split into min {Q

b
, P

t
} chunks (or subsets) of equal size P

ti
 = max {floor(P

t
 / Q

b
), 1} –

floor rounds the argument to the previous integer (whenever it is decimal) or yields the
argument itself, being each chunk aimed to derive Q

bi
 = 1 hidden node.

140

Potential of neural networks for structural damage localization11 (18), 124 – 153

140

Artículo/Article
Sección/Section C

Learning Algorithm (feature 13)
The most popular learning algorithm is called error back-propagation (BP), a first-order
gradient method. Second-order gradient methods are known to have higher training
speed and accuracy [46]. The most employed is called Levenberg-Marquardt (LM). All these
traditional schemes were implemented using MATLAB toolbox [26].

Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)
Two types of BP schemes were implemented, one with constant learning rate (BP) –‘traingd’
in MATLAB, and another with iteration-dependent rate, named BP with adaptive learning
rate (BPA) – ‘traingda’ in MATLAB. The learning parameters set different than their default
values are:

•	 Learning Rate = 0.01 / cs0.5, being cs the chunk size, as defined in 3.3.15.

•	 Minimum performance gradient = 0.

Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set
different than its default value was the abovementioned (ii).

Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM)
Besides these traditional learning schemes, iterative and time-consuming by nature, four
versions of a recent, powerful and non-iterative learning algorithm, called Extreme Learning
Machine (ELM), were implemented (unlike initially proposed by the authors of ELM,
connections across layers were allowed in this work), namely: (batch) ELM [47], Mini-Batch
ELM (mb ELM) [48], Incremental ELM (I-ELM) [49], Convex Incremental ELM (CI-ELM) [50].

Performance Improvement (feature 14)
A simple and recursive approach aiming to improve ANN accuracy is called Neural
Network Composite (NNC), as described in [51]. In this work, a maximum of 10 extra
ANNs were added to the original one, until maximum error is not improved between
successive NNC solutions. Later in this manuscript, a solution given by a single neural net
might be denoted as ANN, whereas the other possible solution is called NNC.

Training Mode (feature 15)
Depending on the relative amount of training patterns, with respect to the whole training
dataset, that is presented to the network in each iteration of the learning process, several
types of training modes can be used, namely (i) batch or (ii) mini-batch. Whereas in
the batch mode all training patterns are presented (called an epoch) to the network in
each iteration, in the mini-batch counterpart the training dataset is split into several data
chunks (or subsets) and in each iteration a single and new chunk is presented to the
network, until (eventually) all chunks have been presented. Learning involving iterative
schemes (e.g., BP- or LM-based) might require many epochs until an “optimum” design is
found. The particular case of having a mini-batch mode where all chunks are composed
by a single (distinct) training pattern (number of data chunks = P

t
 , chunk size = 1), is

called online or sequential mode. Wilson and Martinez [52] suggested that if one wants
to use mini-batch training with the same stability as online training, a rough estimate of
the suitable learning rate to be used in learning algorithms such as the BP, is

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 141

Abambres / Marcy / Doz (2019)

141

, where cs is the chunk size and is the online learning rate – their proposal was
adopted in this work. Based on the proposal of Liang et al. [48], the constant chunk size
(cs) adopted for all chunks in mini-batch mode reads cs = min{mean(hn) + 50, P

t
}, being

hn a vector storing the number of hidden nodes in each hidden layer in the beginning
of training, and mean(hn) the average of all values in hn.

Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i) maximum
error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All
abovementioned errors are relative errors (expressed in %) based on the following
definition, concerning a single

 (25)

where (i) d
qp

 is the qth desired (or target) output when pattern p within iteration i
(p=1,…, P

i
) is presented to the network, and (ii) y

qLp
 is net’s qth output for the same data

pattern. Moreover, denominator in eq. (25) is replaced by 1 whenever |d
qp

| < 0.05 – d
qp

 in
the nominator keeps its real value. This exception to eq. (25) aims to reduce the apparent
negative effect of large relative errors associated to target values close to zero. Even so,
this trick may still lead to (relatively) large solution errors while very satisfactory results
are depicted as regression plots (target vs. predicted outputs).

Maximum Error
This variable measures the maximum relative error, as defined by eq. (25), among all
output variables and learning patterns.

Percentage of Errors > 3%
This variable measures the percentage of relative errors, as defined by eq. (25), among all
output variables and learning patterns, that are greater than 3%.

Performance
In functional approximation problems, network performance is defined as the average
relative error, as defined in eq. (25), among all output variables and data patterns being
evaluated (e.g., training, all data).

Software Validation

Several benchmark datasets/functions were used to validate the developed software,
involving low- to high-dimensional problems and small to large volumes of data. Due to
paper length limit, validation results are not presented herein but they were made public
online [53].

142

Potential of neural networks for structural damage localization11 (18), 124 – 153

142

Artículo/Article
Sección/Section C

Parametric Analysis Results

Aiming to reduce the computing time by cutting in the number of combos to be run
– note that all features combined lead to hundreds of millions of combos, the whole
parametric simulation was divided into nine parametric SAs, where in each one feature
7 only takes a single value. This measure aims to make the performance ranking of all
combos within each “small” analysis more “reliable”, since results used for comparison
are based on target and output datasets as used in ANN training and yielded by the
designed network, respectively (they are free of any postprocessing that eliminates
output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs
aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while
adopting a single popular method for each of the remaining features (F3: 6, F4: 2, F6:
{1 or 7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1
involved learning algorithms 1-3 and SA 2 involved the ELM- based counterpart, (ii) the
3rd – 7th SAs combined all possible methods from features 3, 4, 6 and 7, and concerning
all other features, adopted the methods integrating the best combination from the
aforementioned first SA, (iii) the 8th SA combined all possible methods from features
11, 12 and 14, and concerning all other features, adopted the methods integrating the
best combination (results compared after postprocessing) among the previous five sub-
analyses, and lastly (iv) the 9th SA combined all possible methods from features 9, 10
and 15, and concerning all other features, adopted the methods integrating the best
combination from the previous analysis.

ANN feature methods used in the best combo from each of the abovementioned nine
parametric sub-analyses, are specified in Tab. 5 (the numbers represent the method
number as in Tabs 2-4). Tab. 6 shows the corresponding relevant results for those combos,
namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all described in section
3, and evaluated for all learning data), (iv) total number of hidden nodes in the model,
and (v) average computing time per example (including data pre- and post-processing).
All results shown in Tab. 6 are based on target and output datasets computed in their
original format, i.e. free of any transformations due to output normalization and/or
dimensional analysis. The microprocessor used in this work has the following features:
OS: Win10 Home- 64bits, RAM: 8GB, Local Disk Memory: 128GB, CPU: Intel® Core™ i5
6200U (dual-core) @ 2.30 GHz.

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 143

Abambres / Marcy / Doz (2019)

143

TABLE 5. ANN features (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

1 1 2 6 2 1 1 1 1 1 1 3 2 3 1 3

2 1 2 6 2 3 7 1 2 1 1 9 2 7 1 3

3 1 2 6 3 1 1 1 1 1 1 3 2 3 1 3

4 1 2 6 2 1 1 2 1 1 1 3 2 3 1 3

5 1 2 6 1 1 1 3 1 1 1 3 2 3 1 3

6 1 2 6 2 1 7 4 1 1 1 3 2 3 1 3

7 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3

8 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3

9 1 2 6 4 1 7 5 1 3 3 3 2 3 1 3

Overall, to obtain satisfactory results, 219 ANN feature combinations were run in the
parametric analysis of this problem. In 3.7, the best ANN-based model obtained is proposed
to efficiently and effectively solve the real-world problem addressed. In sub-section 3.7.4,
the performance results of the proposed ANN are also based on target and output datasets
computed in their original format.

TABLE 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC.

SA

ANN

Max Error
(%)

Performance
All Data

(%)
Errors > 3%

(%)
Total Hidden

Nodes
Running Time /

Data Point
(s)

1 46.2 2.7 23.4 12 4.40 E -03

2 1598.9 99.2 90.6 43 2.58 E -04

3 45.5 2.5 21.9 12 1.77 E -03

4 141.2 8.7 34.4 12 3.23 E -04

5 10.1 1.6 17.2 12 1.74 E -03

6 253.4 8.9 31.3 12 3.04 E -03

7 12.4 1.2 9.4 12 7.53 E -04

8 108.8 8.4 31.3 12 1.44 E -03

9 0.2 0.0 0.0 12 1.34 E -03

(a)

144

Potential of neural networks for structural damage localization11 (18), 124 – 153

144

Artículo/Article
Sección/Section C

SA

NNC

Max Error
(%)

Performance
All Data

(%)

Errors > 3%
(%)

Total Hidden
Nodes

Running Time /
Data Point

(s)

1 14.1 1.7 20.3 12 4.56 E -03

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - -

6 253.3 8.4 28.1 12 5.22 E -03

7 9.4 0.6 4.7 12 1.65 E -03

8 108.7 8.1 28.1 12 3.79 E -03

9 - - - - -

(b)

Proposed ANN-Based Model

The proposed ANN is the one, among the ones simulated during the parametric analysis,
exhibiting the lowest maximum error. In this case, that model was yielded by SA 9 and
is characterized by the ANN feature methods {1, 2, 6, 4, 1, 7, 5, 1, 3, 3, 3, 2, 3, 1, 3} in Tabs.
2-4. Aiming to allow implementation of this model by any user, all variables/equations
required for (i) data preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are
presented in 3.7.1-3.7.3, respectively. The proposed ANN is a MLPN with 5 layers and a
distribution of nodes/layer given by 3-4-4-4-1. Concerning connectivity, the network is
fully-connected (across layer connections allowed), and the hidden and output transfer
functions are all Hyperbolic Tangent and Identity, respectively. The network was trained using
the LM algorithm (1500 epochs). After design, the network computing time concerning the
presentation of a single example (including data pre/postprocessing) is 1.34x10-3 s – Fig. 7
depicts a simplified scheme of some of network key features. Lastly, all relevant performance
results concerning the proposed ANN are illustrated in 3.7.4.

FIGURE 7. Proposed 3-4-4-4-1 fully-connected MLPN – simplified scheme.

inputs outputs

MLPN
(computing time = 1.34

3 4 4 4 1

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 145

Abambres / Marcy / Doz (2019)

145

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means
the former is to be added to all columns of the latter (this is valid in MATLAB).

Input Data Preprocessing
For future use of the proposed ANN to simulate new data Y

1,sim
 (3 x P

sim
 vector) concerning P

sim

patterns, the same data preprocessing (if any) performed before training must be applied
to the input dataset. That preprocessing is defined by the methods used for ANN features
2, 3 and 5 (respectively 2, 6 and 1 – see Tab. 2), which should be applied after all (eventual)
qualitative variables in the input dataset are converted to numerical (using feature 1’s
method). Next, the necessary preprocessing to be applied to Y

1,sim
, concerning features 2, 3

and 5, is fully described.

Dimensional Analysis and Dimensionality Reduction
Since neither dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out,

 (26)

Input Normalization
After input normalization, the new input dataset is defined as function of
the previously determined , and they have the same size, reading

(27)

where “.x” multiplies component i in the l.h.s vector by all components in row i of Y
1,sim

.

ANN-Based Analytical Model
Once determined the preprocessed input dataset {Y

1,sim
}

n
after (3 x P

sim
 matrix), the next step

is to present it to the proposed ANN to obtain the predicted output dataset {Y
5,sim

}
n

after

(1 x P
sim

 vector), which will be given in the same preprocessed format of the target dataset
used in learning. In order to convert the predicted outputs to their “original format” (i.e.,
without any transformation due to normalization or dimensional analysis – the only
transformation visible will be the (eventual) qualitative variables written in their numeric
representation), some postprocessing is needed, as described in detail in 3.7.3. Next, the
mathematical representation of the proposed ANN is given, so that any user can implement
it to determine {Y

5,sim
}

n
after , thus eliminating all rumors that ANNs are “black boxes”.

(28)

146

Potential of neural networks for structural damage localization11 (18), 124 – 153

146

Artículo/Article
Sección/Section C

where

(29)

 (30)

 (31)

 (32)

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 147

Abambres / Marcy / Doz (2019)

147

(33)

Vectors and matrices presented in eqs. (30)-(33) can also be found in [54], aiming to ease
their implementation by any interested reader.

Output Data Postprocessing
In order to transform the output dataset obtained by the proposed ANN, {Y

5,sim
}

n
after, to

its original format (Y
5,sim

), i.e. without the effects of dimensional analysis and/or output
normalization (possibly) taken in target dataset preprocessing prior training, the
postprocessing addressed next must be performed.

Non-normalized (just after dimensional analysis) and Original formats
Once obtained {Y

5,sim
}

n
after, the following relations hold for its transformation to its non-

normalized format {Y
5,sim

}
da
after (just after the dimensional analysis stage), and for latter’s

transformation to its original format Y
5,sim

 (with no influence of preprocessing)

 (34)

since no output normalization nor dimensional analysis were carried out. Moreover,
since no negative output values are physically possible for the problem addressed
herein, the ANN prediction should be defined as

 (35)

meaning that no structural damage exists whenever the output yielded by eq. (34) is
negative.

Performance Results
Results yielded by the proposed ANN can be found either (i) online in [18], where the target
and ANN output values are provided together with the corresponding input dataset, or
(ii) in terms of performance variables defined in sub-section 3.4, as presented next in the
form of several graphs: (ii1) a regression plot (Fig. 8), where network target and output
data are plotted, for each data point, as x- and y- coordinates, respectively – a measure
of quality is given by the Pearson Correlation Coefficient (R), as defined in eq. (1); (ii2) a
performance plot (Fig. 9), where performance values are displayed for several datasets;
and (ii3) an error plot (Fig. 10), where values concern the maximum error and the % of
errors greater than 3%, for all data. It´s worth highlighting that all graphical results just

148

Potential of neural networks for structural damage localization11 (18), 124 – 153

148

Artículo/Article
Sección/Section C

mentioned are based on target and output datasets computed in their original format,
i.e. free of any transformations due to output normalization and/or dimensional analysis.

FIGURE 8. Regression plot for the proposed ANN (see output variable in Fig. 1(a)).

O
ut

pu
t ~

=
1*

Ta
rg

et
 +

 2
.9

e-
06

Output Var 1: R=1

Target

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0,2

0
0 0.5 1 1.5 2

Data
Fit
Y = T

Further Testing: Prediction of Experimental Results

Aiming to test the proposed analytical model to the prediction of experimental results,
three test results taken from [16] were considered, as shown in Tab. 7. Only tests I and III
regard damaged members. The errors (smaller than 1%) displayed in Tab. 7 attest once
again the capability of the proposed ANN-based analytical model.

FIGURE 9. Performance plot for the proposed ANN.

Training Validation Testing All

0.0% 0.0% 0.0% 0.0%

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305 149

Abambres / Marcy / Doz (2019)

149

FIGURE 10. Error plot for the proposed ANN.

All data max error % errors > 3%

0.2% 0.0%

TABLE 7. ANN performance in the prediction of 3 test results.

TEST
Freq. 1

(Hz)
Freq. 2

(Hz)
Freq. 3

(Hz)
Real Damage

Location
(m)

ANN-based
Damage Location

(m)
Error (%)

ANN vs Real

I 40.142 117.454 221.441 1.2407 1.2367 0.3

II 42.523 118.771 231.677 No Damage -0.23 ⟷ 0 0

III 39.590 117.305 221.143 1.306 1.315 0.7

CONCLUSIONS

This paper primarily aimed to assess the potential of Artificial Neural Network (ANN)
models in the prediction of damage localization in structural members, as function of
their dynamic properties – the three first natural frequencies were used. Based on 64
numerical examples from damaged (mostly) and undamaged steel channel beams, an
ANN-based analytical model was proposed as a highly accurate and efficient damage
localization estimator. The proposed model yielded maximum errors of 0.2 and 0.7 %
concerning 64 numerical and 3 experimental data points, respectively.

Since it was proved that the approach taken works well for structural members, authors’
next step (in the very near future) is to apply similar procedures to entire bridge or
building structures, this time based on much larger datasets in order to provide an
analytical solution with high credibility concerning its generalization capability, i.e. its
capacity of giving good results for a large amount of examples (i) within the ranges
considered for the input variables, and (ii) not considered during ANN development.

150

Potential of neural networks for structural damage localization11 (18), 124 – 153

150

Artículo/Article
Sección/Section C

ACKNOWLEDGEMENTS
The 2nd and 3rd authors wish to acknowledge the support given by the Brazilian National
Council for Scientific and Technological Development (CNPq) and the University
of Brasília.
There are no conflicts of interest to disclose.

CONTRIBUTIONS

Abambres developed, validated and applied the ANN software and wrote that part of the
paper. The remaining authors equally contributed for sections 1 and 2 of the paper
(state of art and data gathering). All authors equally contributed for the abstract,
conclusions and final review of the manuscript.

ERRATUM
On March 2021, I, Miguel Abambres, found some bugs on my own ANN software,
which affected the results presented in this paper. The software was debugged and
the computational simulations rerun so that a new corrected version of the paper can
be published during 2022. Details about the effects of the bugs on the published
results will be provided.

Software bugs in previous papers – sources and solutions
On March 2021, Abambres found some bugs on his own ANN software, which had
been used to yield ANN results for several papers published until that date, including
this one. A not-so-severe bug was found in the definition of the 8th parametric sub-
analysis, since it was not defined exactly as it was described in section “Parametric
Analysis Results”. The critical bugs were found in non-ELM (non-Extreme Learning
Machine) learning algorithms for "mini-batch" and "online" training modes, and
unintendedly caused the “% Train - Valid - Test” ANN feature to become “100 - 0 - 0”
during neural net design, thus affecting the generalization potential of the proposed
ANN. The bug sources were the following:

• "trainlm", "traingd" and "traingda" training functions do not allow incremental
(online or mini-batch) training when using MATLAB neural network toolbox –
regardless the data format employed in train(…) arguments, only batch training
will be used.

• if net.divideMode is not specified when using MATLAB neural net toolbox, the
default value for feedforward ANNs is 'sample'. However, the implemented data
division (train / valid / test) for incremental training uses timestep (instead of
sample) indexes, which means the assignment net.divideMode = 'time' was
missing right before net.divideFcn = 'divideind'.

151DOI: http://dx.doi.org/10.18272/aci.v11i2.1305

Abambres / Marcy / Doz (2019)

In order to overcome the above cited issues, Abambres first explored MATLAB’s training
functions that are said to allow incremental training, but found several limitations
(reported in here https://archive.ph/r6Yw3 and here https://archive.ph/HsaC6). Thus,
Abambres’ final decision was to redefine the ANN parametric analysis in order to (i)
remove all incremental non-ELM learning algorithms, and (ii) increase the ELM-based
simulations while improving their cross-validation.

Final Note
For personal and professional reasons, I have decided not to write/publish (pro-bono)
the new version of this paper for the results obtained with the debugged ANN
software, even though the former were pretty satisfactory. Feel free to get in touch to
amgg@mailfence.com if you need more information.

Miguel Abambres

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305

Abambres / Marcy / Doz (2019)

152

REFERENCES

[1]	 Nguyen VV, Dackermann U, Li J, Makki Alamdari M, Mustapha S, Runcie P, Ye L (2015). Damage Identification of a
Concrete Arch Beam Based on Frequency Response Functions and Artificial Neural Networks. Electronic Journal of
Structural Engineering, 14(1), 75-84.

[2] Onur Avci, P. O., & Abdeljaber, A. O. (2016). Self-Organizing Maps for Structural Damage Detection: A Novel
Unsupervised Vibration-Based Algorithm. Journal of Performance of Constructed Facilities, 30(3), 1-11.

[3]	 Jin C, Jang S, Sun X, Li J, Christenson R (2016). Damage detection of a highway bridge under severe temperature
changes using extended Kalman filter trained neural network. Journal of Civil Structural Health Monitoring, 6(3),
545 - 560.

[4]	 Chengyin L, Wu X, Wu N, Liu C (2014). Structural Damage Identification Based on Rough Sets and Artificial Neural
Network, The Scientific World Journal, 2014(ID 193284), 1-9, doi: 10.1155/2014/193284

[5]	 Meruane V, Mahu J (2014). Real-Time Structural Damage Assessment Using Artificial Neural Networks and Antiresonant
Frequencies. Shock and Vibration, 2014 (ID 653279), 1-14, doi: 10.1155/2014/653279

[6]	 Structural Vibration Solutions A/S (SVS) (2018). ARTeMIS Modal 4.0®, Aalborg, Denmark.

[7] Bandara RP, Chan THT, Thambiratnam DP (2013). The Three Stage Artificial Neural Network Method for Damage
Assessment of Building Structures. Australian Journal of Structural Engineering, 14 (1), 13-25.

[8]	 Ahmed MS (2016). Damage Detection in Reinforced Concrete Square Slabs Using Modal Analysis and Artificial Neural
Network. PhD thesis, Nottingham Trent University, Nottingham, UK.

[9]	 Vakil-Baghmisheh M-T, Peimani M, Sadeghi MH, Ettefagh MM (2008). Crack detection in beam-like structures using
genetic algorithms. Applied Soft Computing, 8(2), 1150–1160. doi:10.1016/j.asoc.2007.10.003.

[10] Aydin K, Kisi O (2015). Damage Diagnosis in Beam-Like Structures by Artificial Neural Networks. Journal of Civil
Engineering and Management, 21(5), 591–604, doi:10.3846/13923730.2014.890663

[11]	 Kourehli SS (2015). Damage Assessment in Structures Using Incomplete Modal Data and Artificial Neural Network.
International Journal of Structural Stability and Dynamics, 15(06), 1450087-1-17, doi:10.1142/s0219455414500874

[12]	 Nazarko P, Ziemianski L (2017). Application of artificial neural networks in the damage identification of structural elements.
Computer Assisted Methods in Engineering and Science, 18(3), 175–189, Available at: http://cames.ippt.gov.pl/index.
php/cames/article/view/113 (accessed on Nov 2nd 2018).

[13] Brasiliano A (2005). Identificação de Sistemas e Atualização de Modelos Numéricos com Vistas à Avaliação (in
Portuguese). PhD thesis, Technology Faculty, University of Brasilia (UnB), Brasília, Brazil.

[14]	 Gerdau (2018). Perfil U Gerdau. [online] Available at https://www.gerdau.com/br/pt/produtos/perfil-u-gerdau#ad-
image-0 [Accessed 15 Oct. 2018].

[15]	 ANSYS, Inc. (2018). ANSYS® – Academic Research Mechanical, Release 18.1, Canonsburg, PA, USA.

[16]	 Marcy M, Brasiliano A, da Silva G, Doz, G (2014). Locating damages in beams with artificial neural network. Int. J. of
Lifecycle Performance Engineering, 1(4), 398-413.

[17]	 Callister WD, Rethwisch DG (2009). Materials Science and Engineering: An Introduction (8th ed). John Wiley & Sons,
Versailles, USA.

[18]	 Authors (2018a). data_set_ANN + results [Data set]. Zenodo, http://doi.org/10.5281/zenodo.1463849

[19] Hertzmann A, Fleet D (2012). Machine Learning and Data Mining, Lecture Notes CSC 411/D11, Computer Science
Department, University of Toronto, Canada.

[20]	 McCulloch WS, Pitts W (1943). A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical
Biophysics, 5(4), 115–133.

[21]	 Hern A (2016). Google says machine learning is the future. So I tried it myself. Available at: www.theguardian.com/
technology/2016/jun/28/all (Accessed: 2 November 2016).

[22]	 Wilamowski BM, Irwin JD (2011). The industrial electronics handbook: Intelligent Systems, CRC Press, Boca Raton.

Potential of neural networks for structural damage localization11 (18), 124 – 153

153

Artículo/Article
Sección/Section C

[23]	 Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, Rojas I (2016). Neural networks: An overview of early research,
current frameworks and new challenges, Neurocomp., 214(Nov), 242-268.

[24]	 Flood I (2008). Towards the next generation of artificial neural networks for civil engineering, Advanced Engineering
Informatics, 228(1), 4-14.

[25]	 Haykin SS (2009). Neural networks and learning machines, Prentice Hall/Pearson, New York.

[26]	 The Mathworks, Inc (2017). MATLAB R2017a, User’s Guide, Natick, USA.

[27]	 Bhaskar R, Nigam A (1990). Qualitative physics using dimensional analysis, Artificial Intelligence, 45(1-2), 111–73.

[28]	 Gholizadeh S, Pirmoz A, Attarnejad R (2011). Assessment of load carrying capacity of castellated steel beams by neural
networks, Journal of Constructional Steel Research, 67(5), 770–779.

[29]	 Kasun LLC, Yang Y, Huang G-B, Zhang Z (2016). Dimension reduction with extreme learning machine, IEEE Transactions
on Image Processing, 25(8), 3906–18.

[30]	 Lachtermacher G, Fuller JD (1995). Backpropagation in time-series forecasting, Journal of Forecasting 14(4), 381–393.

[31]	 Pu Y, Mesbahi E (2006). Application of artificial neural networks to evaluation of ultimate strength of steel panels,
Engineering Structures, 28(8), 1190–1196.

[32]	 Tohidi S, Sharifi Y (2014). Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using
artificial neural networks, The IES Journal Part A: Civil & Structural Eng, 8(1), 24–40.

[33]	 Flood I, Kartam N (1994a). Neural Networks in Civil Engineering: I-Principals and Understanding, Journal of Computing
in Civil Engineering, 8(2), 131-148.

[34]	 Mukherjee A, Deshpande JM, Anmala J (1996), Prediction of buckling load of columns using artificial neural networks,
Journal of Structural Engineering, 122(11), 1385–7.

[35]	 Wilamowski BM (2009). Neural Network Architectures and Learning algorithms, IEEE Industrial Electronics Magazine,
3(4), 56-63.

[36]	 Xie T, Yu H, Wilamowski B (2011). Comparison between traditional neural networks and radial basis function networks,
2011 IEEE International Symposium on Industrial Electronics (ISIE), IEEE(eds), 27-30 June 2011, Gdansk University of
Technology Gdansk, Poland, 1194–99.

[37]	 Aymerich F, Serra M (1998). Prediction of fatigue strength of composite laminates by means of neural networks. Key
Eng. Materials, 144(September), 231–240.

[38] Rafiq M, Bugmann G, Easterbrook D (2001). Neural network design for engineering applications, Computers &
Structures, 79(17), 1541–1552.

[39]	 Xu S, Chen L (2008). Novel approach for determining the optimal number of hidden layer neurons for FNN’s and its
application in data mining, In: International Conference on Information Technology and Applications (ICITA), Cairns
(Australia), 23–26 June 2008, pp 683–686.

[40]	 Gunaratnam DJ, Gero JS (1994). Effect of representation on the performance of neural networks in structural engineering
applications, Computer-Aided Civil and Infrastructure Engineering, 9(2), 97– 108.

[41]	 Lefik M, Schrefler BA (2003). Artificial neural network as an incremental non-linear constitutive model for a finite
element code, Computer Methods in Applied Mech and Eng, 192(28–30), 3265–3283.

[42] Bai Z, Huang G, Wang D, Wang H, Westover M (2014). Sparse extreme learning machine for classification. IEEE
Transactions on Cybernetics, 44(10), 1858–70.

[43]	 Schwenker F, Kestler H, Palm G (2001). Three learning phases for radial-basis-function networks, Neural networks,
14(4-5), 439–58.

[44]	 Waszczyszyn Z (1999). Neural Networks in the Analysis and Design of Structures, CISM Courses and Lectures No. 404,
Springer, Wien, New York.

[45]	 Deng W-Y, Bai, Z., Huang, G.-B. and Zheng, Q.-H. (2016). A fast SVD-Hidden-nodes based extreme learning machine for
large-scale data Analytics, Neural Networks, 77(May), 14–28.

[46] Wilamowski BM (2011). How to not get frustrated with neural networks, 2011 IEEE International Conference on
Industrial Technology (ICIT), 14-16 March, IEEE (eds), Auburn Univ., Auburn, AL.

DOI: http://dx.doi.org/10.18272/aci.v11i2.1305

Abambres / Marcy / Doz (2019)

154

[47]	 Huang G-B, Zhu Q-Y, Siew C-K (2006a). Extreme learning machine: Theory and applications, Neurocomputing, 70(1-3),
489-501.

[48]	 Liang N, Huang G, Saratchandran P, Sundararajan N (2006). A fast and accurate online Sequential learning algorithm for
Feedforward networks, IEEE Transactions on Neural Networks, 17(6), 1411–23.

[49]	 Huang G, Chen L, Siew C (2006b). Universal approximation using incremental constructive feedforward networks with
random hidden nodes, IEEE transactions on neural networks, 17(4), 879–92.

[50]	 Huang G-B, Chen L (2007). Convex incremental extreme learning machine, Neurocomputing, 70(16–18), 3056–3062.

[51]	 Beyer W, Liebscher M, Beer M, Graf W (2006). Neural Network Based Response Surface Methods - A Comparative
Study, 5th German LS-DYNA Forum, October 2006, 29-38, Ulm.

[52] Wilson DR, Martinez TR (2003). The general inefficiency of batch training for gradient descent learning, Neural
Networks, 16(10), 1429–1451.

[53]	 Researcher, The (2018). “Annsoftwarevalidation-report.pdf”, figshare, doi: http://doi.org/10.6084/m9.figshare.6962873

[54]	 Authors (2018b). W_b_arrays [Data set]. Zenodo, http://doi.org/10.5281/zenodo.1469120

	Blank Page

